A family of tetravalent half-arc-transitive graphs

被引:2
作者
Biswas, Sucharita [1 ]
Das, Angsuman [1 ]
机构
[1] Presidency Univ, Dept Math, 86-1 Coll St, Kolkata 700073, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2021年 / 131卷 / 02期
关键词
Half-arc-transitive graph; graph automorphism; cycles;
D O I
10.1007/s12044-021-00625-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Alspach et al. (J. Austral. Math. Soc. 56(3) (1994) 391-402) constructed an infinite family of tetravalent graphs M(a; m, n) and proved that if n >= 9 be odd and a(3) equivalent to 1(mod n), then M(a; 3, n) is half-arc-transitive. In this paper, we show that if a(3) equivalent to 1(mod n), then M(a; 3, n) is an infinite family of tetravalent half-arc-transitive Cayley graphs for all integers n except 7 and 14.
引用
收藏
页数:17
相关论文
共 14 条
[1]   CONSTRUCTING GRAPHS WHICH ARE 1/2-TRANSITIVE [J].
ALSPACH, B ;
MARUSIC, D ;
NOWITZ, L .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 56 :391-402
[2]  
Biswas S, FAMILY TETRAVALENT H
[3]   VERTEX AND EDGE TRANSITIVE, BUT NOT 1-TRANSITIVE, GRAPHS [J].
BOUWER, IZ .
CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (02) :231-&
[4]  
Chen J., 2013, ELECT J COMBINATORIC, V20, P56, DOI [10.37236/3140, DOI 10.37236/3140]
[5]   Tetravalent half-arc-transitive graphs of order p5 [J].
Cheng, Huiwen ;
Cui, Li .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 :506-518
[6]   Tetravalent half-arc-transitive graphs of order p4 [J].
Feng, Yan-Quan ;
Kwak, Jin Ho ;
Xu, Ming-Yao ;
Zhou, Jin-Xin .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (03) :555-567
[7]   Tetravalent half-transitive graphs of order 4p [J].
Feng, Yan-Quan ;
Wang, Kaishun ;
Zhou, Chuixiang .
EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (03) :726-733
[8]   Tetravalent half-arc-transitive graphs of order 2pq [J].
Feng, Yan-Quan ;
Kwak, Jin Ho ;
Wang, Xiuyun ;
Zhou, Jin-Xin .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 33 (04) :543-553
[9]  
Godsil C, 2001, Algebraic Graph TheoryGraduate-Texts in Mathematics
[10]   A GRAPH WHICH IS EDGE TRANSITIVE BUT NOT ARC TRANSITIVE [J].
HOLT, DF .
JOURNAL OF GRAPH THEORY, 1981, 5 (02) :201-204