Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation

被引:14
作者
Nicoli, Matteo [1 ]
Vivo, Edoardo [2 ,3 ]
Cuerno, Rodolfo [2 ,3 ]
机构
[1] Ecole Polytech, Phys Mat Condensee Lab, CNRS, F-91128 Palaiseau, France
[2] Univ Carlos III Madrid, Dept Matemat, E-28911 Leganes, Spain
[3] Univ Carlos III Madrid, GISC, E-28911 Leganes, Spain
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 04期
关键词
GROWTH; DIMENSIONS; INVARIANCE;
D O I
10.1103/PhysRevE.82.045202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study numerically the Kuramoto-Sivashinsky equation forced by external white noise in two space dimensions, that is a generic model for, e. g., surface kinetic roughening in the presence of morphological instabilities. Large scale simulations using a pseudospectral numerical scheme allow us to retrieve Kardar-Parisi-Zhang (KPZ) scaling as the asymptotic state of the system, as in the one-dimensional (1D) case. However, this is only the case for sufficiently large values of the coupling and/or system size, so that previous conclusions on non-KPZ asymptotics are demonstrated as finite size effects. Crossover effects are comparatively stronger for the two-dimensional case than for the 1D system.
引用
收藏
页数:4
相关论文
共 28 条
[1]  
[Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
[2]   Hydrodynamics of the Kuramoto-Sivashinsky equation in two dimensions [J].
Boghosian, BM ;
Chow, CC ;
Hwa, T .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5262-5265
[3]   Dynamics and stability of premixed flames [J].
Bychkov, VV ;
Liberman, MA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 325 (4-5) :115-237
[4]   Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation [J].
Canet, Leonie ;
Chate, Hugues ;
Delamotte, Bertrand ;
Wschebor, Nicolas .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[5]  
Canuto C., 1987, SPECTRAL METHODS FLU
[6]   DEFECT-MEDIATED STABILITY - AN EFFECTIVE HYDRODYNAMIC THEORY OF SPATIOTEMPORAL CHAOS [J].
CHOW, CC ;
HWA, T .
PHYSICA D, 1995, 84 (3-4) :494-512
[7]  
Cross M., 2009, Pattern Formation and Dynamics in Nonequilibrium Systems
[8]   RENORMALIZATION-GROUP ANALYSIS OF A NOISY KURAMOTO-SIVASHINSKY EQUATION [J].
CUERNO, R ;
LAURITSEN, KB .
PHYSICAL REVIEW E, 1995, 52 (05) :4853-4859
[9]   DYNAMIC SCALING OF ION-SPUTTERED SURFACES [J].
CUERNO, R ;
BARABASI, AL .
PHYSICAL REVIEW LETTERS, 1995, 74 (23) :4746-4749
[10]   STOCHASTIC-MODEL FOR SURFACE EROSION VIA ION SPUTTERING - DYNAMICAL EVOLUTION FROM RIPPLE MORPHOLOGY TO ROUGH MORPHOLOGY [J].
CUERNO, R ;
MAKSE, HA ;
TOMASSONE, S ;
HARRINGTON, ST ;
STANLEY, HE .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4464-4467