On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator

被引:44
作者
Solonnikov, VA [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 196140, Russia
关键词
D O I
10.1070/RM2003v058n02ABEH000613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, which is mainly of a survey nature, a coercive estimate is proved in Sobolev spaces with a mixed norm to solve the non-stationary Stokes problem (with non-zero divergence) in bounded and exterior domains, and from the first estimate an estimate is proved for the resolvent of the Stokes operator. The latter proof uses the explicit representation of the solution of the problem in a half-space in terms of the Green's matrix; pointwise estimates are derived for the elements of this matrix.
引用
收藏
页码:331 / 365
页数:35
相关论文
共 27 条
[1]  
Besov O.V., 1979, INTEGRAL REPRESENTAT, VII
[2]  
Besov O.V., 1978, INTEGRAL REPRESENTAT, VI
[3]  
BOGOVSKII ME, 1980, TRUDY SEM S L SOBOLE, V1, P5
[4]   ON THE BOUNDEDNESS OF THE STOKES SEMIGROUP IN 2-DIMENSIONAL EXTERIOR DOMAINS [J].
BORCHERS, W ;
VARNHORN, W .
MATHEMATISCHE ZEITSCHRIFT, 1993, 213 (02) :275-299
[5]   ON THE SEMIGROUP OF THE STOKES OPERATOR FOR EXTERIOR DOMAINS IN LQ-SPACES [J].
BORCHERS, W ;
SOHR, H .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (03) :415-425
[6]  
BUGROV YS, 1972, MATH USSR IZV, V5, P1145
[7]   ON SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (02) :289-309
[8]   THE STATIONARY AND NONSTATIONARY STOKES SYSTEM IN EXTERIOR DOMAINS WITH NONZERO DIVERGENCE AND NONZERO BOUNDARY-VALUES [J].
FARWIG, R ;
SOHR, H .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (04) :269-291
[9]   ABSTRACT LP ESTIMATES FOR THE CAUCHY-PROBLEM WITH APPLICATIONS TO THE NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS [J].
GIGA, Y ;
SOHR, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (01) :72-94
[10]  
Giga Y., 1989, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V36, P103