Darboux transformation and solitonic solution to the coupled complex short pulse equation

被引:37
作者
Feng, Bao-Feng [1 ]
Ling, Liming [2 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78541 USA
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Darboux transformation; Coupled complex short pulse equation; Solitons; Rogue waves; Modulational instability; INVERSE SCATTERING TRANSFORM; MULTIPLE-POLE SOLITONS; MODULATIONAL INSTABILITY; SCHRODINGER-EQUATIONS; WAVE SOLUTIONS; ASYMPTOTICS; ORDER; WATER;
D O I
10.1016/j.physd.2022.133332
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Darboux transformation (DT) for the coupled complex short pulse (CCSP) equation is constructed through the loop group method. The DT is then utilized to construct various exact solutions including bright-soliton, dark-soliton, breather and rogue wave solutions to the CCSP equation. In case of vanishing boundary condition (VBC), we perform the inverse scattering analysis. Breather and rogue wave solutions are constructed under non-vanishing boundary condition (NVBC). Moreover, we conduct a modulational instability (MI) analysis based on the method of squared eigenfunctions, whose result confirms the condition for the existence of rogue wave solution. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:28
相关论文
共 48 条
[1]  
Ablowitz MJ., 1991, Solitons, nonlinear evolution equations and inverse scattering
[2]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[3]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[4]   Vector Rogue Waves and Baseband Modulation Instability in the Defocusing Regime [J].
Baronio, Fabio ;
Conforti, Matteo ;
Degasperis, Antonio ;
Lombardo, Sara ;
Onorato, Miguel ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[5]  
Belokolos ED, 1994, Algebro-geometric approach to nonlinear integrable equations
[6]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[7]   Far-field asymptotics for multiple-pole solitons inthelarge-order limit [J].
Bilman, Deniz ;
Buckingham, Robert ;
Wang, Deng-Shan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 297 :320-369
[8]   EXTREME SUPERPOSITION: ROGUE WAVES OF INFINITE ORDER AND THE PAINLEVE-III HIERARCHY [J].
Bilman, Deniz ;
Ling, Liming ;
Miller, Peter D. .
DUKE MATHEMATICAL JOURNAL, 2020, 169 (04) :671-760
[9]   Large-Order Asymptotics for Multiple-Pole Solitons of the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Buckingham, Robert .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (05) :2185-2229
[10]   A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Miller, Peter D. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (08) :1722-1805