On periodic inertia-gravity waves of finite amplitude propagating without change of form at sharp density- gradient interfaces in the rotating fluid

被引:6
作者
Plougonven, R [1 ]
Zeitlin, V [1 ]
机构
[1] Ecole Normale Super, Meteorol Dynam Lab, F-75231 Paris 05, France
关键词
D O I
10.1016/S0375-9601(03)00882-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Existence of finite-amplitude inertia-gravity waves propagating without change of form is proved in the two-layer rotating shallow water model. We find exact solutions of the full equations of motion corresponding to such waves. The form of the nonlinear waves depends on the parameters of the model (density and height ratios of the layers) and on the phase speed. Three distinct families of waves having different forms and responding differently to the increase of amplitude are identified. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 149
页数:10
相关论文
共 8 条
[1]  
[Anonymous], 1981, SOV PHYS IZVESTIJA
[2]  
Gill AE., 1982, ATMOSPHERE OCEAN DYN, P317, DOI 10.1016/S0074-6142(08)60034-0
[3]   Long nonlinear surface and internal gravity waves in a rotating ocean [J].
Grimshaw, RHJ ;
Ostrovsky, LA ;
Shrira, VI ;
Stepanyants, YA .
SURVEYS IN GEOPHYSICS, 1998, 19 (04) :289-338
[4]  
Kuo AC, 1997, J PHYS OCEANOGR, V27, P1614, DOI 10.1175/1520-0485(1997)027<1614:TDFNGA>2.0.CO
[5]  
2
[6]  
Pedlosky J., 1987, Geophysical Fluid Dynamics, DOI DOI 10.1007/978-1-4612-4650-3
[7]  
Shrira V. I., 1986, IZV AS ATMOS OCEAN P, V22, P298
[8]   Frontal geostrophic adjustment, slow manifold and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 1. Theory [J].
Zeitlin, V ;
Medvedev, SB ;
Plougonven, R .
JOURNAL OF FLUID MECHANICS, 2003, 481 :269-290