Output error convergence of adaptive filters with compensation for output nonlinearities

被引:15
作者
Wigren, T [1 ]
机构
[1] Univ Uppsala, Dept Technol, Syst & Control Grp, S-75103 Uppsala, Sweden
关键词
convergence analysis; nonlinear systems; recursive identification;
D O I
10.1109/9.701104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Output error convergence of a Wiener model-based nonlinear stochastic gradient algorithm is analyzed. The normalized scheme estimates the parameters of a linear finite impulse response (FLR) model in cascade with a known output nonlinearity. The algorithm can be interpreted as a normalized least mean square (NLMS) algorithm with compensation for an output nonlinearity. Linearizing inversion of the nonlinearity is not utilized. Global output error convergence is then proved, provided that the nonlinearity is monotone (not strictly monotone), and provided that a previously observed mechanism resulting in deadlock does not occur. The algorithm and the analysis include important practical eases like sensor saturation and deadzones that must be excluded when global parametric convergence is studied.
引用
收藏
页码:975 / 978
页数:4
相关论文
共 21 条
[1]  
[Anonymous], 1987, THEORY DESIGN ADAPTI
[2]  
Astrom K. J., 1995, Adaptive Control
[3]  
Benveniste A., 1987, International Journal of Adaptive Control and Signal Processing, V1, P3, DOI 10.1002/acs.4480010103
[4]  
BILLINGS SA, 1978, ELECTRON LETT, V13, P502
[5]   MULTIDIMENSIONAL STOCHASTIC APPROXIMATION METHODS [J].
BLUM, JR .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (04) :737-744
[6]  
DVORETSKY A, 1956, P 3 BERK S MATH STOC, V1, P35
[8]   NONPARAMETRIC IDENTIFICATION OF WIENER SYSTEMS [J].
GREBLICKI, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (05) :1487-1493
[9]   EXPONENTIAL STABILITY OF GENERAL TRACKING ALGORITHMS [J].
GUO, L ;
LJUNG, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (08) :1376-1387
[10]   PERFORMANCE ANALYSIS OF GENERAL TRACKING ALGORITHMS [J].
GUO, L ;
LJUNG, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (08) :1388-1402