Lifting spectral triples to noncommutative principal bundles

被引:5
作者
Schwieger, Kay [1 ]
Wagner, Stefan [2 ]
机构
[1] Iteratec GmbH, Stuttgart, Germany
[2] Blekinge Tekniska Hgsk, Karlskrona, Sweden
关键词
Noncommutative principal bundle; Factor system; Spectral triple; DIRAC OPERATORS; FACTORIZATION; FIBRATIONS;
D O I
10.1016/j.aim.2021.108160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a free action of a compact Lie group G on a unital C*-algebra A and a spectral triple on the corresponding fixed point algebra A(G), we present a systematic and in-depth construction of a spectral triple on A that is build upon the geometry of A(G) and G. We compare our construction with a selection of established examples. (C)& nbsp;2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:36
相关论文
共 63 条
[1]   On nonperturbative quantum field theory and noncommutative geometry [J].
Aastrup, Johannes ;
Grimstrup, Jesper Moller .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 145
[2]  
ai B., 2019, PREPRINT ARXIV 1912
[3]   Spectral triples for noncommutative solenoidal spaces from self-coverings [J].
Aiello, Valeriano ;
Guido, Daniele ;
Isola, Tommaso .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1378-1412
[4]   The Dirac operator on nilmanifolds and collapsing circle bundles [J].
Ammann, B ;
Bar, C .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (03) :221-253
[5]  
Ammann B., 1998, SEMINAIRE THEORIE SP, V16, P33
[6]  
[Anonymous], 1989, ANAL NOW
[7]  
[Anonymous], 1994, Non-Commutative Differential Geometry
[8]  
Araki H., 1991, MAPPINGS OPERATOR AL, V84, P141
[9]  
Baum P., 2007, PREPRINT ARXIV MATH
[10]  
Baum PF, 2017, DOC MATH, V22, P825