Boosting power for clinical trials using classifiers based on multiple biomarkers

被引:141
作者
Kohannim, Omid [1 ]
Hua, Xue [1 ]
Hibar, Derrek P. [1 ]
Lee, Suh [1 ]
Chou, Yi-Yu [1 ]
Toga, Arthur W. [1 ]
Jack, Clifford R., Jr. [2 ]
Weiner, Michael W. [3 ,4 ,5 ]
Thompson, Paul M. [1 ]
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90095 USA
[2] Mayo Clin, Dept Radiol, Rochester, MN USA
[3] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Med, San Francisco, CA USA
[5] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
Clinical trial enrichment; Alzheimer's disease; Mild cognitive impairment; Magnetic resonance imaging; Neuroimaging; Biomarkers; Classification; Support vector machines; MILD COGNITIVE IMPAIRMENT; TENSOR-BASED MORPHOMETRY; EARLY ALZHEIMERS-DISEASE; SUPPORT VECTOR MACHINE; TEMPORAL-LOBE ATROPHY; PATTERN-CLASSIFICATION; HIPPOCAMPAL ATROPHY; CSF BIOMARKERS; BRAIN ATROPHY; APOE GENOTYPE;
D O I
10.1016/j.neurobiolaging.2010.04.022
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Machine learning methods pool diverse information to perform computer-assisted diagnosis and predict future clinical decline. We introduce a machine learning method to boost power in clinical trials. We created a Support Vector Machine algorithm that combines brain imaging and other biomarkers to classify 737 Alzheimer's disease Neuroimaging initiative (ADNI) subjects as having Alzheimer's disease (AD), mild cognitive impairment (MCI), or normal controls. We trained our classifiers based on example data including: MRI measures of hippocampal, ventricular, and temporal lobe volumes, a PET-FDG numerical summary, CSF biomarkers (t-tau, p-tau, and A beta(42)), ApoE genotype, age, sex, and body mass index. MRI measures contributed most to Alzheimer's disease (AD) classification; PET-FDG and CSF biomarkers, particularly A beta(42), contributed more to MCI classification. Using all biomarkers jointly, we used our classifier to select the one-third of the subjects most likely to decline. In this subsample, fewer than 40 AD and MCI subjects would be needed to detect a 25% slowing in temporal lobe atrophy rates with 80% power-a substantial boosting of power relative to standard imaging measures. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1429 / 1442
页数:14
相关论文
共 71 条
[1]  
ALEXANDER GE, 2008, ALZHEIMERS DEMENT, V4, pT273
[2]   Three-dimensional gray matter atrophy mapping in mild cognitive impairment and mild Alzheimer disease [J].
Apostolova, Liana G. ;
Steiner, Calen A. ;
Akopyan, Gohar G. ;
Dutton, Rebecca A. ;
Hayashi, Kiralee M. ;
Toga, Arthur W. ;
Cummings, Jeffrey L. ;
Thompson, Paul M. .
ARCHIVES OF NEUROLOGY, 2007, 64 (10) :1489-1495
[3]   3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease [J].
Apostolova, Liana G. ;
Dinov, Ivo D. ;
Dutton, Rebecca A. ;
Hayashi, Kiralee M. ;
Toga, Arthur W. ;
Cummings, Jeffrey L. ;
Thompson, Paul M. .
BRAIN, 2006, 129 :2867-2873
[4]   Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps [J].
Apostolova, Liana G. ;
Dutton, Rebecca A. ;
Dinov, Ivo D. ;
Hayashi, Kiralee M. ;
Toga, Arthur W. ;
Cummings, Jeffrey L. ;
Thompson, Paul M. .
ARCHIVES OF NEUROLOGY, 2006, 63 (05) :693-699
[5]   Gender differences in dementia risk factors [J].
Azad, Nahid A. ;
Al Bugami, Muneerah ;
Loy-English, Inge .
GENDER MEDICINE, 2007, 4 (02) :120-129
[6]  
BRASKIE MN, 2008, NEUROBIOL AGING 1110
[7]   Change in body mass index and risk of incident Alzheimer disease [J].
Buchman, AS ;
Wilson, RS ;
Bienias, JL ;
Shah, RC ;
Evans, DA ;
Bennett, DA .
NEUROLOGY, 2005, 65 (06) :892-897
[8]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[9]  
CARLSSON CM, 2009, HAZZARDS GERIATRIC M, pCH65
[10]   Twelve-month metabolic declines in probable Alzheimer's disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: Findings from the Alzheimer's Disease Neuroimaging Initiative [J].
Chen, Kewei ;
Langbaum, Jessica B. S. ;
Fleisher, Adam S. ;
Ayutyanont, Napatkamon ;
Reschke, Cole ;
Lee, Wendy ;
Liu, Xiaofen ;
Bandy, Dan ;
Alexander, Gene E. ;
Thompson, Paul M. ;
Foster, Norman L. ;
Harvey, Danielle J. ;
de Leon, Mony J. ;
Koeppe, Robert A. ;
Jagust, William J. ;
Weiner, Michael W. ;
Reiman, Eric M. .
NEUROIMAGE, 2010, 51 (02) :654-664