VIRTUAL ELEMENTS FOR A SHEAR-DEFLECTION FORMULATION OF REISSNER-MINDLIN PLATES

被引:32
作者
Beirao Da Veiga, L. [1 ]
Mora, D. [2 ]
Rivera, G. [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Univ Concepcion, Dept Matemat, Univ Biobio, Casilla 5-C,Chile & CI2MA, Concepcion, Chile
[3] Univ Los Lagos, Dept Ciencias Exactas, Casilla 933, Osorno, Chile
关键词
Virtual element method; Reissner-Mindlin plates; error analysis; polygonal meshes; DISCONTINUOUS GALERKIN METHODS; INTERPOLATION;
D O I
10.1090/mcom/3331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a virtual element method for the Reissner-Mindlin plate bending problem which uses shear strain and deflection as discrete variables without the need of any reduction operator. The proposed method is conforming in [H-1(Omega)](2) x H-2(Omega) and has the advantages of using general polygonal meshes and yielding a direct approximation of the shear strains. The rotations are then obtained by a simple post-process from the shear strain and deflection. We prove convergence estimates with involved constants that are uniform in the thickness t of the plate. Finally, we report numerical experiments which allow us to assess the performance of the method.
引用
收藏
页码:149 / 178
页数:30
相关论文
共 48 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]  
[Anonymous], 1991, SPRINGER SERIES COMP
[3]  
[Anonymous], 1970, PRINCETON MATH SER
[4]  
Antonietti PF, 2017, CALCOLO, V54, P1169, DOI 10.1007/s10092-017-0223-6
[5]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[6]   A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Mora, D. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) :386-404
[7]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[8]   Locking-free Reissner-Mindlin elements without reduced integration [J].
Arnold, Douglas N. ;
Brezzi, Franco ;
Falk, Richard S. ;
Marini, L. Donatella .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3660-3671
[9]  
Beirao da Veiga L, 2014, MS MODELING SIMULATI, V11
[10]   A virtual element method for the acoustic vibration problem [J].
Beirao da Veiga, Lourenco ;
Mora, David ;
Rivera, Gonzalo ;
Rodriguez, Rodolfo .
NUMERISCHE MATHEMATIK, 2017, 136 (03) :725-763