An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage

被引:104
作者
Yan, Lijing [1 ]
Zeng, Xiaomin [1 ]
Li, Zeheng [1 ]
Meng, Xiangjuan [1 ]
Wei, Di [1 ]
Liu, Tiefeng [2 ]
Ling, Min [1 ]
Lin, Zhan [2 ]
Liang, Chengdu [1 ]
机构
[1] Zhejiang Univ, Zhejiang Prov Key Lab Adv Chem Engn Manufacture T, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[2] Guangdong Univ Technol, Coll Light Ind & Chem Engn, Guangzhou 510006, Peoples R China
关键词
Aqueous zinc-ion batteries; ZnMn2O4; cathode; Organic quinone anode; Dendrite free; Stationary energy storage; CYCLE LIFE; ELECTRODE MATERIALS; LITHIUM; ANODE; BATTERIES; CAPACITY; MECHANISM; DISCHARGE; SULFATE; GROWTH;
D O I
10.1016/j.mtener.2019.06.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphite was reported by J.O. Besenhard as the reservoir for alkali ions in 1974. The booming period of lithium-ion batteries arrived after the graphite patent issued by Sony Co. in 1991. The flourish development is due to the address of lithium dendrite issue through the substitution from lithium metal to graphite. Currently, the zinc dendrite formation in zinc-ion batteries is one of the major issues. Herein, we fabricate a zinc-ion full battery by replacing zinc metal with organic quinone, which is a zinc dendrite free material. This novel zinc-ion full battery exhibits excellent cycling stability with capacity retention of 94.4% and high specific capacity of 189.5 mA h g(-1) after 500 cycles. Ascribed to the low cost of quinone and long cycle performance, this work could inaugurate a new era for rechargeable aqueous zinc-ion batteries. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 51 条
[1]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[2]  
BESENHAR.JO, 1974, J ELECTROANAL CHEM, V53, P329, DOI 10.1016/S0022-0728(74)80146-4
[3]  
Betz J., 2018, ADV ENERGY MATER, V1
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501
[6]   An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode [J].
Guo, Zhaowei ;
Ma, Yuanyuan ;
Dong, Xiaoli ;
Huang, Jianhang ;
Wang, Yonggang ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (36) :11737-11741
[7]   THE NATURE OF PI-PI INTERACTIONS [J].
HUNTER, CA ;
SANDERS, JKM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (14) :5525-5534
[8]   Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth [J].
Jaeckle, Markus ;
Gross, Axel .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (17)
[9]   3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries [J].
Kang, Zhuang ;
Wu, Changle ;
Dong, Liubing ;
Liu, Wenbao ;
Mou, Jian ;
Zhang, Jingwen ;
Chang, Ziwen ;
Jiang, Baozheng ;
Wang, Guoxiu ;
Kang, Feiyu ;
Xu, Chengjun .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (03) :3364-+
[10]   Review of zinc-based hybrid flow batteries: From fundamentals to applications [J].
Khor, A. ;
Leung, P. ;
Mohamed, M. R. ;
Flox, C. ;
Xu, Q. ;
An, L. ;
Wills, R. G. A. ;
Morante, J. R. ;
Shah, A. A. .
MATERIALS TODAY ENERGY, 2018, 8 :80-108