A numerical study of heat transfer effects and aerodynamic noise reduction in superheated steam flow passing a temperature and pressure regulation valve

被引:12
作者
Qian, Jin-yuan [1 ,2 ,3 ]
Chen, Min-rui [1 ,2 ,3 ]
Jin, Zhi-jiang [1 ,2 ,3 ]
Chen, Li-long [1 ,2 ,3 ]
Sunden, Bengt [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Inst Proc Equipment, Coll Energy Engn, Hangzhou 310027, Peoples R China
[2] Lund Univ, Dept Energy Sci, Skane, Sweden
[3] Hangzhou Worldwides Valve Co Ltd, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
CYLINDER; WATER;
D O I
10.1080/10407782.2020.1746558
中图分类号
O414.1 [热力学];
学科分类号
摘要
Steam is a common medium in thermal engineering. When it flows through a throttling element, the aerodynamic noise may occur due to the disturbance. In this investigation, superheated steam flowing through a Venturi tube, one of the main parts in a temperature and pressure regulation valve, at different thermal conditions is studied to analyze to effects of heat transfer on the acoustic power. With a high temperature and a low pressure, the superheated steam is treated as ideal gas. The flow velocity is high, so the k-epsilon turbulent model is used, with the compressible steam. The results show that under the adiabatic condition, the acoustic power mainly influenced by the turbulent characteristics, such as the dissipation rate and the turbulent kinetic energy. Comparing the acoustic power levels at different thermal conditions, it is found that a lower temperature results to a lower acoustic power.
引用
收藏
页码:873 / 889
页数:17
相关论文
empty
未找到相关数据