Nonlinear Robin problems with indefinite potential

被引:8
作者
Leonardi, S. [1 ]
Onete, Florin, I [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
[2] Univ Craiova, Dept Math, 13 AI Cuza St, Craiova 200585, Romania
关键词
Nonlinear regularity; Nonlinear maximum principle; Extremal constant sign solutions; Nodal solutions; Critical groups;
D O I
10.1016/j.na.2020.111760
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Robin problem driven by the p-Laplacian plus an indefinite potential. The conditions on the source term are minimal. We prove two multiplicity theorems with sign information for all the solutions. In the semilinear case (p = 2), we show that we can have multiple nodal solutions. We apply our results to a special class of logistic equations with equidiffusive reaction. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 25 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]   ON A CLASS OF NONLINEAR DIRICHLET PROBLEMS WITH MULTIPLE SOLUTIONS [J].
AMBROSETTI, A ;
LUPO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (10) :1145-1150
[3]  
[Anonymous], 1979, Nonlinear Anal.
[4]   Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction [J].
D'Agui, Giuseppina ;
Marano, Salvatore A. ;
Papageorgiouc, Nikolaos S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) :1821-1845
[5]   The Brezis-Oswald Result for Quasilinear Robin Problems [J].
Fragnelli, Genni ;
Mugnai, Dimitri ;
Papageorgiou, Nikolaos S. .
ADVANCED NONLINEAR STUDIES, 2016, 16 (03) :603-622
[6]  
Hu S., 1997, Handbook of Multivalued Analysis (Theory), DOI 10.1007/978-1-4615-6359-4
[7]   Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities [J].
Leonardi, S. ;
Papageorgiou, Nikolaos S. .
POSITIVITY, 2020, 24 (02) :339-367
[8]  
Leonardi S., 2018, NONLINEAR ANAL B, V177
[9]   On a class of critical Robin problems [J].
Leonardi, Salvatore ;
Papageorgiou, Nikolaos S. .
FORUM MATHEMATICUM, 2020, 32 (01) :95-109
[10]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219