Nonlinear Robin problems with indefinite potential

被引:8
作者
Leonardi, S. [1 ]
Onete, Florin, I [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
[2] Univ Craiova, Dept Math, 13 AI Cuza St, Craiova 200585, Romania
关键词
Nonlinear regularity; Nonlinear maximum principle; Extremal constant sign solutions; Nodal solutions; Critical groups;
D O I
10.1016/j.na.2020.111760
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Robin problem driven by the p-Laplacian plus an indefinite potential. The conditions on the source term are minimal. We prove two multiplicity theorems with sign information for all the solutions. In the semilinear case (p = 2), we show that we can have multiple nodal solutions. We apply our results to a special class of logistic equations with equidiffusive reaction. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 25 条
  • [1] Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
  • [2] ON A CLASS OF NONLINEAR DIRICHLET PROBLEMS WITH MULTIPLE SOLUTIONS
    AMBROSETTI, A
    LUPO, D
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (10) : 1145 - 1150
  • [3] Ambrosetti A., 1979, Nonlinear Anal, V3, P635, DOI [10.1016/0362-546X(79)90092-0, DOI 10.1016/0362-546X(79)90092-0]
  • [4] Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction
    D'Agui, Giuseppina
    Marano, Salvatore A.
    Papageorgiouc, Nikolaos S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) : 1821 - 1845
  • [5] The Brezis-Oswald Result for Quasilinear Robin Problems
    Fragnelli, Genni
    Mugnai, Dimitri
    Papageorgiou, Nikolaos S.
    [J]. ADVANCED NONLINEAR STUDIES, 2016, 16 (03) : 603 - 622
  • [6] Hu S., 1997, Handbook of multivalued analysis (theory)
  • [7] Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    [J]. POSITIVITY, 2020, 24 (02) : 339 - 367
  • [8] Leonardi S., 2018, NONLINEAR ANAL B, V177
  • [9] On a class of critical Robin problems
    Leonardi, Salvatore
    Papageorgiou, Nikolaos S.
    [J]. FORUM MATHEMATICUM, 2020, 32 (01) : 95 - 109
  • [10] BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS
    LIEBERMAN, GM
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) : 1203 - 1219