Nanocubosomal based in situ gel loaded with natamycin for ocular fungal diseases: development, optimization, in-vitro, and in-vivo assessment

被引:21
|
作者
Hosny, Khaled M. [1 ,2 ]
Rizg, Waleed Y. [1 ,2 ]
Alkhalidi, Hala M. [3 ]
Abualsunun, Walaa A. [1 ]
Bakhaidar, Rana B. [1 ]
Almehmady, Alshaimaa M. [1 ]
Alghaith, Adel F. [4 ]
Alshehri, Sultan [4 ]
El Sisi, Amani M. [5 ]
机构
[1] King Abdulaziz Univ, Fac Pharm, Dept Pharmaceut, Jeddah 21441, Saudi Arabia
[2] King Abdulaziz Univ, Ctr Excellence Drug Res & Pharmaceut Ind, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Pharm, Dept Clin Pharm, Jeddah, Saudi Arabia
[4] King Saud Univ, Coll Pharm, Dept Pharmaceut, Riyadh, Saudi Arabia
[5] Beni Suef Univ, Fac Pharm, Dept Pharmaceut & Ind Pharm, Bani Suwayf, Egypt
关键词
Cubosomes; cornea; in situ gel; keratitis; natamycin; permeation; phytantriol; DRUG-DELIVERY-SYSTEM; OPHTHALMIC DELIVERY; CORNEAL PENETRATION; FORMULATION; CUBOSOMES; INFECTIONS; KERATITIS; NANOPARTICLES; NANOCARRIERS; LIPOSOMES;
D O I
10.1080/10717544.2021.1965675
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Natamycin (NT) is a synthetic broad-spectrum antifungal used in eye drops. However, it has low solubility and high molecular weight, limiting its permeation, and generally causes eye discomfort or irritation when administered. Therefore, the present study aimed to develop an ophthalmic in situ gel formulation with NT-loaded cubosomes to enhance ocular permeation, improve antifungal activity, and prolong the retention time within the eye. The NT-loaded cubosome (NT-Cub) formula was first optimized using an I-optimal design utilizing phytantriol, PolyMulse, and NT as the independent formulation factors and particle size, entrapment efficiency %, and inhibition zone as responses. Phytantriol was found to increase particle size and entrapment efficiency %. Higher levels of PolyMulse slightly increased the inhibition zone whereas a decrease in particle size and EE% was observed. Increasing the NT level initially increased the entrapment efficiency % and inhibition zone. The optimized NT-Cub formulation was converted into an in situ gel system using 1.5% Carbopol 934. The optimum formula showed a pH-sensitive increase in viscosity, favoring prolonged retention in the eye. The in vitro release of NT was found to be 71 +/- 4% in simulated tear fluid. The optimum formulation enhanced the ex vivo permeation of NT by 3.3 times compared to a commercial formulation and 5.2 times compared to the NT suspension. The in vivo ocular irritation test proved that the optimum formulation is less irritating than a commercial formulation of NT. This further implies that the developed formulation produces less ocular irritation and can reduce the required frequency of administration.
引用
收藏
页码:1836 / 1848
页数:13
相关论文
共 50 条
  • [31] Development and Optimization of Cefuroxime Axetil Nanosuspension for Improved Oral Bioavailability: In-Vitro and In-Vivo Investigations
    Mishra, Haragouri
    Behera, Amulyaratna
    Kar, Sidhartha Sankar
    Dash, Swagatika
    Moharana, Srikanta
    Sagadevan, Suresh
    BIONANOSCIENCE, 2023, 13 (04) : 2371 - 2384
  • [32] Quality-by-design approach for development and optimization of bupivacaine-loaded nanostructured lipid carrier in situ gel: In vitro, Ex vivo, and In vivo studies for enhanced periodontal anesthesia
    Khan, Sarfaraz
    Khan, Furquan
    ANALYTICAL CHEMISTRY LETTERS, 2025, : 191 - 213
  • [33] Development, Optimization, and Antifungal Assessment of Ocular Gel Loaded With Ketoconazole Cubic Liquid Crystalline Nanoparticles
    Elfaky, Mahmoud A.
    Sirwi, Alaa
    Tolba, Heba H.
    Shaik, Rasheed A.
    Selmi, Nouf M.
    Alattas, Ahlam H.
    Albreki, Raghad S.
    Alshreef, Nuha M.
    Gad, Heba A.
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 110 (05) : 2210 - 2220
  • [34] Optimization of variables and assessment of in-vitro and in-vivo antihyperlipidemic activity of Eudragit RS nanoparticles containing simvastatin
    Gidwani, Bina
    Jain, Vishal
    Joshi, Veenu
    Pandey, Ravindra Kumar
    Shukla, Shiv Shankar
    Vyas, Amber
    PARTICUOLOGY, 2024, 90 : 189 - 198
  • [35] Brain Targeting of Quetiapine Fumarate via Intranasal Delivery of Loaded Lipospheres: Fabrication, In-Vitro Evaluation, Optimization, and In-Vivo Assessment
    Zaki, Randa Mohammed
    Aldawsari, Mohammed F.
    Alossaimi, Manal A.
    Alzaid, Shaikah F.
    Seshadri, Vidya Devanathadesikan
    Almurshedi, Alanood S.
    Aldosari, Basmah Nasser
    Yusif, Rehab Mohammad
    Sayed, Ossama M.
    PHARMACEUTICALS, 2022, 15 (09)
  • [36] Proniosomal gel-derived niosomes: an approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in-vivo pharmacodynamic study
    Eldeeb, Alaa Emad
    Salah, Salwa
    Ghorab, Mahmoud
    DRUG DELIVERY, 2019, 26 (01) : 509 - 521
  • [37] Development and Optimization of Terpene-Enriched Vesicles (Terpesomes) for Effective Ocular Delivery of Fenticonazole Nitrate: In vitro Characterization and in vivo Assessment
    Albash, Rofida
    Al-mahallawi, Abdulaziz Mohsen
    Hassan, Mariam
    Alaa-Eldin, Ahmed Adel
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2021, 16 : 609 - 621
  • [38] Tailoring Terpesomes and Leciplex for the Effective Ocular Conveyance of Moxifloxacin Hydrochloride (Comparative Assessment): In-vitro, Ex-vivo, and In-vivo Evaluation
    Albash, Rofida
    Abdellatif, Menna M.
    Hassan, Mariam
    Badawi, Noha M.
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2021, 16 : 5247 - 5263
  • [39] Nanostructured Ethosomal Gel Loaded with Arctostaphylosuva-Ursi Extract; In-Vitro/In-Vivo Evaluation as a Cosmeceutical Product for Skin Rejuvenation
    Javed, Nayla
    Ijaz, Shakeel
    Akhtar, Naveed
    Shoaib Khan, Haji Muhammad
    CURRENT DRUG DELIVERY, 2022, 19 (06) : 706 - 720
  • [40] Formulation and optimization of microemulsion based sparfloxacin in-situ gel for ocular delivery: In vitro and ex vivo characterization
    Dhaval, Mori
    Devani, Jatin
    Parmar, Ramesh
    Soniwala, M. M.
    Chavda, Jayant
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2020, 55