Fields generated by torsion points of elliptic curves

被引:6
作者
Bandini, Andrea [1 ]
Paladino, Laura [2 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, PR, Italy
[2] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, PI, Italy
关键词
Elliptic curves; Torsion points; Galois representations; GALOIS REPRESENTATIONS;
D O I
10.1016/j.jnt.2016.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field of characteristic char(K) not equal 2,3 and let epsilon be an elliptic curve defined over K. Let m be a positive integer, prime with char(K) if char(K) not equal 0; we denote by epsilon[m] the rn-torsion subgroup of epsilon and by K-m := K(epsilon[m]) the field obtained by adding to K the coordinates of the points of epsilon[m]. Let P-i := (x,, y(i)) (i = 1,2) be a Z-basis for epsilon[m]; then K-m = K (x(1), y(1), x(2), y(2)). We look for small sets of generators for K-m inside {x(1), y(1), x(2), P-2, zeta(m)} trying to emphasize the role of zeta(m) (a primitive m-th root of unity). In particular, we prove that K-m = K (x(1), zeta(m), y(2)), for any odd m >= 5. When m = p is prime and K is a number field we prove that the generating set {x(1), zeta(p), y(2)} is often minimal, while when the classical Galois representation Gal(K-p/K) -> GL(2)(Z/pZ) is not surjective we are sometimes able to further reduce the set of generators. We also describe explicit generators, degree and Galois groups of the extensions K-m/K for m = 3 and m = 4. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:103 / 133
页数:31
相关论文
共 18 条
[1]  
[Anonymous], 1981, I HAUTES ETUDES SCI
[2]  
[Anonymous], 2001, LECT NOTES MATH
[3]  
[Anonymous], 1994, GRAD TEXTS MATH
[5]   3-Selmer groups for curves y2=x3+a [J].
Bandini, Andrea .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (02) :429-445
[6]   Number fields generated by the 3-torsion points of an elliptic curve [J].
Bandini, Andrea ;
Paladino, Laura .
MONATSHEFTE FUR MATHEMATIK, 2012, 168 (02) :157-181
[7]   An analogue for elliptic curves of the Grunwald-Wang example [J].
Dvornicich, R ;
Zannier, U .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (01) :47-50
[8]   Local-global divisibility of rational points in some commutative algebraic groups [J].
Dvornicich, R ;
Zannier, U .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2001, 129 (03) :317-338
[9]   Mod 4 Galois representations and elliptic curves [J].
Holden, Christopher .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) :31-39
[10]  
KATZ NM, 1985, ANN MATH STUD, V108