ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION

被引:1
|
作者
Liu, Huan [1 ]
Null, Xiangcheng Zheng [2 ]
Fu, Hongfei [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2022年 / 40卷 / 05期
基金
中国博士后科学基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
Variable-order; Multi-term time-fractional diffusion equation; Solution regularity; Galerkin finite element; Parareal method; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; REGULARITY; PARAREAL; DISPERSION; MODELS;
D O I
10.4208/jcm.2102-m2020-0211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the well-posedness and solution regularity of a multi-term variable-order time-fractional diffusion equation, and then develop an optimal Galerkin finite element scheme without any regularity assumption on its true solution. We show that the solution regularity of the considered problem can be affected by the maximum value of variable-order at initial time t = 0. More precisely, we prove that the solution to the multi-term variable-order time-fractional diffusion equation belongs to C-2 ([0, T]) in time provided that the maximum value has an integer limit near the initial time and the data has sufficient smoothness, otherwise the solution exhibits the same singular behavior like its constant-order counterpart. Based on these regularity results, we prove optimal-order convergence rate of the Galerkin finite element scheme. Furthermore, we develop an efficient parallel-in-time algorithm to reduce the computational costs of the evaluation of multi-term variable-order fractional derivatives. Numerical experiments are put forward to verify the theoretical findings and to demonstrate the efficiency of the proposed scheme.
引用
收藏
页码:818 / 838
页数:21
相关论文
共 50 条
  • [1] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [2] Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation
    Wei, Leilei
    Wang, Huanhuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 685 - 698
  • [3] A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
    Liu, Huan
    Cheng, Aijie
    Wang, Hong
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (01)
  • [4] A Weak Galerkin Finite Element Method for Multi-Term Time-Fractional Diffusion Equations
    Zhou, Jun
    Xu, Da
    Chen, Hongbin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 181 - 193
  • [5] Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation
    Jia, Jinhong
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [6] A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    Haromi, Malih Farzi
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 341 : 215 - 228
  • [7] AN ERROR ESTIMATE OF A NUMERICAL APPROXIMATION TO A HIDDEN-MEMORY VARIABLE-ORDER SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Zheng, Xiangcheng
    Wang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2492 - 2514
  • [8] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [9] Analysis and numerical approximation to time-fractional diffusion equation with a general time-dependent variable order
    Zheng, Xiangcheng
    Wang, Hong
    NONLINEAR DYNAMICS, 2021, 104 (04) : 4203 - 4219
  • [10] A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
    Huan Liu
    Aijie Cheng
    Hong Wang
    Journal of Scientific Computing, 2020, 85