Semantic Segmentation of White Matter in FDG-PET Using Generative Adversarial Network

被引:25
作者
Oh, Kyeong Taek [1 ]
Lee, Sangwon [2 ]
Lee, Haeun [1 ]
Yun, Mijin [2 ]
Yoo, Sun K. [1 ]
机构
[1] Yonsei Univ, Coll Med, Dept Med Engn, Seoul, South Korea
[2] Yonsei Univ, Coll Med, Dept Nucl Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
GAN; Deep learning; FDG-PET; ADNI; White matter segmentation; VOLUME CHANGES; DISEASE;
D O I
10.1007/s10278-020-00321-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In the diagnosis of neurodegenerative disorders, F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18-FDG PET/CT) is used for its ability to detect functional changes at early stages of disease process. However, anatomical information from another modality (CT or MRI) is still needed to properly interpret and localize the radiotracer uptake due to its low spatial resolution. Lack of structural information limits segmentation and accurate quantification of the F-18-FDG PET/CT. The correct segmentation of the brain compartment in F-18-FDG PET/CT will enable the quantitative analysis of the F-18-FDG PET/CT scan alone. In this paper, we propose a method to segment white matter in F-18-FDG PET/CT images using generative adversarial network (GAN). The segmentation result of GAN model was evaluated using evaluation parameters such as dice, AUC-PR, precision, and recall. It was also compared with other deep learning methods. As a result, the proposed method achieves superior segmentation accuracy and reliability compared with other deep learning methods.
引用
收藏
页码:816 / 825
页数:10
相关论文
共 50 条
[31]   Using the Generative Adversarial Network to Generate Recommendations [J].
Prosvetov, A., V .
FUZZY SYSTEMS AND DATA MINING VI, 2020, 331 :1-6
[32]   Image Denoising Using A Generative Adversarial Network [J].
Alsaiari, Abeer ;
Rustagi, Ridhi ;
Alhakamy, A'eshah ;
Thomas, Manu Mathew ;
Forbes, Angus G. .
2019 IEEE 2ND INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT), 2019, :126-132
[33]   Improving segmentation reliability of multi-scanner brain images using a generative adversarial network [J].
Niu, Kai ;
Li, Xueyan ;
Zhang, Li ;
Yan, Zhensong ;
Yu, Wei ;
Liang, Peipeng ;
Wang, Yan ;
Lin, Ching-Po ;
Zhang, Huimao ;
Guo, Chunjie ;
Li, Kuncheng ;
Qian, Tianyi .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (03) :1775-+
[34]   Efficient Segmentation of Vessels and Disc Simultaneously Using Multi-channel Generative Adversarial Network [J].
Kar M.K. ;
Nath M.K. .
SN Computer Science, 5 (3)
[35]   SMART-PET: a Self-SiMilARiTy-aware generative adversarial framework for reconstructing low-count [18F]-FDG-PET brain imaging [J].
Raymond, Confidence ;
Zhang, Dong ;
Cabello, Jorge ;
Liu, Linshan ;
Moyaert, Paulien ;
Burneo, Jorge G. ;
Dada, Michael O. ;
Hicks, Justin W. ;
Finger, Elizabeth ;
Soddu, Andrea ;
Andrade, Andrea ;
Jurkiewicz, Michael T. ;
Anazodo, Udunna C. .
FRONTIERS IN NUCLEAR MEDICINE, 2024, 4
[36]   A transformer-based generative adversarial network for brain tumor segmentation [J].
Huang, Liqun ;
Zhu, Enjun ;
Chen, Long ;
Wang, Zhaoyang ;
Chai, Senchun ;
Zhang, Baihai .
FRONTIERS IN NEUROSCIENCE, 2022, 16
[37]   Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer's disease: A DTI/FDG-PET Study [J].
Bozoki, Andrea C. ;
Korolev, Igor O. ;
Davis, Nathan C. ;
Hoisington, Lori A. ;
Berger, Kevin L. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1792-1802
[38]   Deep Bayesian networks for uncertainty estimation and adversarial resistance of white matter hyperintensity segmentation [J].
Forooshani, Parisa Mojiri ;
Biparva, Mahdi ;
Ntiri, Emmanuel E. ;
Ramirez, Joel ;
Boone, Lyndon ;
Holmes, Melissa F. ;
Adamo, Sabrina ;
Gao, Fuqiang ;
Ozzoude, Miracle ;
Scott, Christopher J. M. ;
Dowlatshahi, Dar ;
Lawrence-Dewar, Jane M. ;
Kwan, Donna ;
Lang, Anthony E. ;
Marcotte, Karine ;
Leonard, Carol ;
Rochon, Elizabeth ;
Heyn, Chris ;
Bartha, Robert ;
Strother, Stephen ;
Tardif, Jean-Claude ;
Symons, Sean ;
Masellis, Mario ;
Swartz, Richard H. ;
Moody, Alan ;
Black, Sandra E. ;
Goubran, Maged .
HUMAN BRAIN MAPPING, 2022, 43 (07) :2089-2108
[39]   Tumor segmentation on FDG-PET: usefulness of locally connected conditional random fields [J].
Nishio, Mizuho ;
Kono, Atsushi K. ;
Koyama, Hisanobu ;
Nishii, Tatsuya ;
Sugimura, Kazuro .
MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
[40]   Generation of 18F-FDG PET standard scan images from short scans using cycle-consistent generative adversarial network [J].
Ghafari, Ali ;
Sheikhzadeh, Peyman ;
Seyyedi, Negisa ;
Abbasi, Mehrshad ;
Farzenefar, Saeed ;
Yousefirizi, Fereshteh ;
Ay, Mohammad Reza ;
Rahmim, Arman .
PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (21)