Entrapment and growth of Chlamydomonas reinhardtii in biocompatible silica hydrogels

被引:17
|
作者
Homburg, Sarah Vanessa [1 ]
Venkanna, Deepak [2 ]
Kraushaar, Konstantin [3 ]
Kruse, Olaf [2 ]
Kroke, Edwin [3 ]
Patel, Anant V. [1 ]
机构
[1] Bielefeld Univ Appl Sci, Fac Engn & Math, Fermentat & Formulat Biol & Chem, Bielefeld, Germany
[2] Bielefeld Univ, Ctr Biotechnol, Algae Biotechnol & Bioenergy, Bielefeld, Germany
[3] TU Bergakad Freiberg, Dept Chem & Phys, Inst Inorgan Chem, Freiberg, Germany
关键词
Silica hydrogels; Microalgae; Transparency; Mechanical stability; Photosynthetic activity; PHOTOBIOLOGICAL H-2 PRODUCTION; SOL-GEL ENCAPSULATION; CHLOROPHYLL FLUORESCENCE; PHOTOTROPHIC PRODUCTION; ESCHERICHIA-COLI; LIVING BACTERIA; WHOLE CELLS; CHITOSAN; IMMOBILIZATION; VIABILITY;
D O I
10.1016/j.colsurfb.2018.09.075
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In this work, we aimed at improved viability and growth of the microalga Chlamydomonas reinhardtii in transparent silica hydrogels based on low-ethanol, low-sodium and low-propylamine synthesis. Investigation into replacement of conventional base KOH by buffers dipotassium phosphate and tris(hydroxymethyl)aminomethane along with increased precursor concentrations yielded an aqueous synthesis route which provided a gelation within 10 min, absorptions below 0.1 and elastic moduli of 0.04-4.23 kPa. The abrasion resistance enhanced by 41% compared to calcium alginate hydrogels and increased to 70-85% residual material on addition of chitosan. Entrapment of microalgae in low-sodium and low-propylamine silica hydrogels maintained the PSII quantum yield above 0.3 and growth rates of 0.23 +/- 0.01 d(-1), similarly to cells entrapped in calcium alginate. These promising results pave the way for the entrapment of sensitive, photosynthetically active and growing cells for in robust biotechnological applications.
引用
收藏
页码:233 / 241
页数:9
相关论文
共 50 条
  • [21] Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor
    Takache, Hosni
    Pruvost, Jeremy
    Cornet, Jean-Francois
    BIOTECHNOLOGY PROGRESS, 2012, 28 (03) : 681 - 692
  • [22] Growth, Distribution, and Photosynthesis of Chlamydomonas Reinhardtii in 3D Hydrogels (Adv. Mater. 2/2024)
    Oh, Jeong-Joo
    Ammu, Satya
    Vriend, Vivian Dorine
    Kieffer, Roland
    Kleiner, Friedrich Hans
    Balasubramanian, Srikkanth
    Karana, Elvin
    Masania, Kunal
    Aubin-Tam, Marie-Eve
    ADVANCED MATERIALS, 2024, 36 (02)
  • [23] PHOTOTAXIS IN CHLAMYDOMONAS REINHARDTII
    STAVIS, RL
    HIRSCHBERG, R
    JOURNAL OF CELL BIOLOGY, 1973, 59 (02): : 367 - 377
  • [24] OSMOREGULATION IN CHLAMYDOMONAS REINHARDTII
    Komsic-Buchmann, K.
    Becker, B.
    PHYCOLOGIA, 2013, 52 (04) : 55 - 55
  • [25] Chlamydomonas reinhardtii proteomics
    Stauber, EJ
    Hippler, M
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2004, 42 (12) : 989 - 1001
  • [26] Cryopreservation of Chlamydomonas reinhardtii
    Crutchfield, Alexandra
    Brand, Jerry J.
    PHYCOLOGIA, 1997, 36 (04) : 22 - 22
  • [27] Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii
    Lei Yang
    Jun Chen
    Shan Qin
    Min Zeng
    Yongguang Jiang
    Lang Hu
    Peng Xiao
    Wenlong Hao
    Zhangli Hu
    Anping Lei
    Jiangxin Wang
    Biotechnology for Biofuels, 11
  • [28] The selective breeding of the freshwater microalga Chlamydomonas reinhardtii for growth in salinity
    Takouridis, Simon J.
    Tribe, David E.
    Gras, Sally L.
    Martin, Gregory J. O.
    BIORESOURCE TECHNOLOGY, 2015, 184 : 18 - 22
  • [29] Effect of glucose on cell growth and hydrogen production by chlamydomonas reinhardtii
    Jia, Li-Na
    Zhang, Xu
    Tan, Tian-Wei
    Beijing Huagong Daxue Xuebao (Ziran Kexueban)/Journal of Beijing University of Chemical Technology (Natural Science Edition), 2006, 33 (06): : 31 - 33