Sign-changing bubble tower solutions for a supercritical elliptic problem with the Henon term

被引:6
作者
Chen, Wenjing [1 ]
Deng, Shengbing [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
supercritical elliptic equation; Henon term; sign-changing bubble tower solutions; Lyapunov-Schmidt procedure; CRITICAL SOBOLEV EXPONENT; BREZIS-NIRENBERG PROBLEM; POSITIVE SOLUTIONS; DIRICHLET PROBLEM; RADIAL SOLUTIONS; CRITICAL GROWTH; EQUATION; UNIQUENESS; DOMAINS;
D O I
10.1088/1361-6544/aa870f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the following elliptic problem with the Henon term {-Delta u = vertical bar x|vertical bar(alpha)vertical bar u vertical bar(p alpha-1-epsilon) u, in Omega, u = 0, on partial derivative Omega where Omega is a bounded smooth domain in R-N containing the origin, N >= 3, and epsilon > 0 small, p(alpha) = N+2+2 alpha/N-2, where alpha > 0 is not an even integer. As epsilon goes to zero, we construct a sign-changing solution with the shape of a tower of bubbles with alternate signs, centered at the origin.
引用
收藏
页码:4344 / 4368
页数:25
相关论文
共 22 条
[1]  
Badiale M, 2004, ADV NONLINEAR STUD, V4, P453
[2]   Super-critical boundary bubbling in a semilinear Neumann problem [J].
del Pino, M ;
Musso, M ;
Pistoia, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :45-82
[3]   The Brezis-Nirenberg problem near criticality in dimension 3 [J].
del Pino, M ;
Dolbeault, J ;
Musso, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (12) :1405-1456
[4]   Bubble-tower radial solutions in the slightly supercritical Brezis-Nirenberg problem [J].
Del Pino, M ;
Dolbeault, J ;
Musso, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :280-306
[5]   Sign Changing Tower of Bubbles for an Elliptic Problem at the Critical Exponent in Pierced Non-Symmetric Domains [J].
Ge, Yuxin ;
Musso, Monica ;
Pistoia, Angela .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (08) :1419-1457
[6]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[7]  
Gladiali F, 2015, DIFFER INTEGRAL EQU, V28, P733
[8]   Nonradial solutions for the Henon equation in RN [J].
Gladiali, Francesca ;
Grossi, Massimo ;
Neves, Sergio L. N. .
ADVANCES IN MATHEMATICS, 2013, 249 :1-36
[9]   Supercritical elliptic problem with nonautonomous nonlinearities [J].
Gladiali, Francesca ;
Grossi, Massimo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (09) :2616-2645
[10]   SOLUTIONS WITH LARGE NUMBER OF PEAKS FOR THE SUPERCRITICAL HENON EQUATION [J].
Liu, Zhongyuan ;
Peng, Shuangjie .
PACIFIC JOURNAL OF MATHEMATICS, 2016, 280 (01) :115-139