Design and FPGA Verification of Custom-Shaped Chaotic Attractors Using Rotation, Offset Boosting and Amplitude Control

被引:37
作者
Sayed, Wafaa S. [1 ]
Roshdy, Merna [2 ]
Said, Lobna A. [2 ]
Radwan, Ahmed G. [1 ,3 ]
机构
[1] Cairo Univ, Fac Engn, Engn Math & Phys Dept, Giza 12613, Egypt
[2] Nile Univ, Nanoelect Integrated Syst Ctr, Giza 12588, Egypt
[3] Nile Univ, Sch Engn & Appl Sci, Giza 12345, Egypt
关键词
Shape; Chaotic communication; Field programmable gate arrays; Boosting; Mathematical model; Hardware; Entropy; Amplitude control; chaos; FPGA; offset boosting; path planning; rotation; SCROLL; SYSTEM;
D O I
10.1109/TCSII.2021.3082271
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief proposes a method of generating custom-shaped attractors, which depends on a planarly rotating V-shape multi-scroll chaotic system with offset boosting and amplitude control, and its FPGA verification. The proposed planarly rotating, translational (offset boostable), and scalable (amplitude controllable) system exhibits a wide basin of attraction and can cover the whole space. Consequently, non-autonomous parameters enable generating attractors of custom-shapes, e.g., letters of the English alphabet as a demonstrating example. Furthermore, non-autonomous parameters are employed to generate attractors with the shape of complete words and sentences. This takes place by generating letter shapes successively and controlling the position and size of each letter. The chaotic behavior is quantified and indicated using spectral entropy. Experimental verification on FPGA shows good hardware resources utilization and throughput.
引用
收藏
页码:3466 / 3470
页数:5
相关论文
共 20 条
[1]   Design of Grid Multiscroll Chaotic Attractors via Transformations [J].
Ai, Xingxing ;
Sun, Kehui ;
He, Shaobo ;
Wang, Huihai .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10)
[2]  
[Anonymous], 1999, P 1999 MAPLD INT C
[3]   A flexible chaotic system with adjustable amplitude, largest Lyapunov exponent, and local Kaplan-Yorke dimension and its usage in engineering applications [J].
Chen, Heng ;
Bayani, Atiyeh ;
Akgul, Akif ;
Jafari, Mohammad-Ali ;
Viet-Thanh Pham ;
Wang, Xiong ;
Jafari, Sajad .
NONLINEAR DYNAMICS, 2018, 92 (04) :1791-1800
[4]   Complex Chaotic Attractor via Fractal Transformation [J].
Dai, Shengqiu ;
Sun, Kehui ;
He, Shaobo ;
Ai, Wei .
ENTROPY, 2019, 21 (11)
[5]  
Govorukhin V., 2004, MATLAB Central File Exchange, V4628
[6]   Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz Hyperchaotic System [J].
He, Shaobo ;
Sun, Kehui ;
Wang, Huihai .
ENTROPY, 2015, 17 (12) :8299-8311
[7]   A novel image encryption system merging fractional-order edge detection and generalized chaotic maps [J].
Ismail, Samar M. ;
Said, Lobna A. ;
Radwan, Ahmed G. ;
Madian, Ahmed H. ;
Abu-ElYazeed, Mohamed E. .
SIGNAL PROCESSING, 2020, 167
[8]   Dynamical analysis, FPGA implementation and its application to chaos based random number generator of a fractal Josephson junction with unharmonic current-phase relation [J].
Kingni, Sifeu Takougang ;
Rajagopal, Karthikeyan ;
Cicek, Serdar ;
Cheukem, Andre ;
Tamba, Victor Kamdoum ;
Kuiate, Gaetan Fautso .
EUROPEAN PHYSICAL JOURNAL B, 2020, 93 (03)
[9]   A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications [J].
Rajagopal, Karthikeyan ;
Akgul, Akif ;
Jafari, Sajad ;
Aricioglu, Burak .
NONLINEAR DYNAMICS, 2018, 91 (02) :957-974
[10]   Two-Dimensional Rotation of Chaotic Attractors: Demonstrative Examples and FPGA Realization [J].
Sayed, W. S. ;
Radwan, A. G. ;
Elnawawy, M. ;
Orabi, H. ;
Sagahyroon, A. ;
Aloul, F. ;
Elwakil, A. S. ;
Fahmy, H. A. ;
El-Sedeek, A. .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (10) :4890-4903