A proof for a conjecture on the Randic index of graphs with diameter

被引:7
作者
Liu, Jianxi [2 ]
Liang, Meili [1 ]
Cheng, Bo [2 ]
Liu, Bolian [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Guangdong Univ Foreign Studies, Cisco Sch Informat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Randic index; Conjecture; Diameter;
D O I
10.1016/j.aml.2010.12.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Randic index R(G) of a graph G is defined by R(G) = Sigma(uv) 1/root d(u)d(v), where d(u) is the degree of a vertex u in G and the summation extends over all edges uv of G. Aouchiche et al. proposed a conjecture on the relationship between the Randic index and the diameter: for any connected graph on n > 3 vertices with the Randic index R(G) and the diameter D(G), R(G) - D(G) >= root 2 - n+1/2 and R(G)/D(G) >= n-3+2 root 2/2n-2, with equalities if and only if G is a path. In this work, we show that this conjecture is true for trees. Furthermore, we prove that for any connected graph on n >= 3 vertices with the Randi index R(G) and the diameter D(G), R(G) - D(G) >= root 2 - n+1/2 with equality if and only if G is a path. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:752 / 756
页数:5
相关论文
共 18 条
  • [1] Aouchiche M, 2007, MATCH-COMMUN MATH CO, V58, P83
  • [2] On a conjecture about the Randic index
    Aouchiche, Mustapha
    Hansen, Pierre
    [J]. DISCRETE MATHEMATICS, 2007, 307 (02) : 262 - 265
  • [3] Bollobás B, 1998, ARS COMBINATORIA, V50, P225
  • [4] Bondy J.A., 2008, GTM
  • [5] On the Randic index
    Delorme, C
    Favaron, O
    Rautenbach, D
    [J]. DISCRETE MATHEMATICS, 2002, 257 (01) : 29 - 38
  • [6] Variable neighborhood search for extremal graphs. 23. On the Randic index and the chromatic number
    Hansen, Pierre
    Vukicevic, Damir
    [J]. DISCRETE MATHEMATICS, 2009, 309 (13) : 4228 - 4234
  • [7] Kier L. B., 1986, Research studies
  • [8] Kier LB., 1976, Molecular connectivity in chemistry and drug research
  • [9] Li X., 2006, MATH CHEM MONOGRAPHS, V31, P89
  • [10] Li XL, 2008, MATCH-COMMUN MATH CO, V59, P127