Human-Like Trajectory Planning for Autonomous Vehicles Based on Spatiotemporal Geometric Transformation

被引:9
|
作者
Liu, Zhaolin [1 ,2 ]
Chen, Jiqing [2 ]
Xia, Hongyang [3 ]
Lan, Fengchong [2 ]
机构
[1] GAC Res & Dev Ctr, Guangzhou 511400, Panyu, Peoples R China
[2] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Tianhe, Peoples R China
[3] Guangdong Polytech Normal Univ, Sch Automobile & Transportat Engn, Guangzhou 510450, Baiyun, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory; Behavioral sciences; Trajectory planning; Spatiotemporal phenomena; Autonomous vehicles; Roads; Safety; Autonomous vehicle; trajectory planning; human-likeness; spatiotemporal geometric transformation; DECISION-MAKING; ROAD; HIGHWAY; MODEL;
D O I
10.1109/TITS.2022.3177224
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Human-driven vehicles and different levels of autonomous vehicles are expected to coexist on roads in the future. However, autonomous systems behave differently from their human-driver counterparts, these two behaviors are incompatible with one another, thereby negatively impacting traffic efficiency and safety. Herein, we present the construction of human-like trajectories for use in autonomous vehicles as a possible solution to this issue. We present a trajectory planning method based on the spatiotemporal geometric transformation of driving scenarios to generate human-like trajectories. Speed and safety redundancy data were collected through driving tests to understand human driving behaviors. Self-driving scenarios were abstracted as a Lorentz coordinate system under a three-dimensional Minkowski space-time. A surrounding-manifold tensor equation was established using differential geometry theory to depict the relationship between the trajectory constraints and the geometric spatiotemporal background. A metric tensor field can be solved from the equation to construct the corresponding "volcano space-time", which is a three-dimensional general Riemannian space for placing the subject vehicle and the surroundings. The geodesics of the volcano space-time are solved using the geodesic equation and are projected back into the three-dimensional Minkowski space-time. Geodesic trajectories were fitted as Bezier curves in this study and corrected according to the vehicle dynamics constraints for trackability. In simulation and real vehicle tests, trajectories generated using the proposed algorithm exhibited collision avoidance and trackability, and the algorithm offered behaviors that were similar to those of human drivers under the same scenarios.
引用
收藏
页码:20160 / 20176
页数:17
相关论文
共 50 条
  • [1] Predictive Trajectory Planning for On-Road Autonomous Vehicles Based on a Spatiotemporal Risk Field
    Cao, Yue
    Wei ShangGuan
    Cai, Baigen
    Chai, Linguo
    Qiu, Weizhi
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2023, 15 (01) : 400 - 420
  • [2] A Human-Like Free-Lane-Change Trajectory Planning and Control Method With Data-Based Behavior Decision
    Chu, Liang
    Wang, Jiawei
    Cao, Zhuo
    Zhang, Yao
    Guo, Chong
    IEEE ACCESS, 2023, 11 : 121052 - 121063
  • [3] Trajectory planning for autonomous vehicles based on improved Hybrid A
    Wang, Chao
    Xu, Nan
    Huang, Yanjun
    Guo, Konghui
    Liu, Yang
    Li, Qin
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2020, 83 (2-4) : 218 - 239
  • [4] Spatiotemporal Trajectory Planning for Autonomous Vehicle Based on Reachable Set and Iterative LQR
    Liu, Yiping
    Pei, Xiaofei
    Zhou, Honglong
    Guo, Xuexun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 10932 - 10947
  • [5] Geometric field model of driver's perceived risk for safe and human-like trajectory planning
    Xia, Taokai
    Chen, Hui
    Yang, Jiaxin
    Guo, Zibin
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 159
  • [6] Formally Robust and Safe Trajectory Planning and Tracking for Autonomous Vehicles
    Yu, Yushu
    Shan, Dan
    Benderius, Ola
    Berger, Christian
    Kang, Yue
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 22971 - 22987
  • [7] Trajectory Planning and Tracking Control of Autonomous Vehicles Based on Improved Artificial Potential Field
    Gao, Yan
    Li, Dazhi
    Sui, Zhen
    Tian, Yantao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (09) : 12468 - 12483
  • [8] Human-like motion planning of autonomous vehicle based on probabilistic trajectory prediction
    Li, Peng
    Pei, Xiaofei
    Chen, Zhenfu
    Zhou, Xingzhen
    Xu, Jie
    APPLIED SOFT COMPUTING, 2022, 118
  • [9] Human-Like Trajectory Planning on Curved Road: Learning From Human Drivers
    Li, Aoxue
    Jiang, Haobin
    Li, Zhaojian
    Zhou, Jie
    Zhou, Xinchen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (08) : 3388 - 3397
  • [10] Dynamic Lane-Changing Trajectory Planning for Autonomous Vehicles Based on Discrete Global Trajectory
    Liu, Yonggang
    Zhou, Bobo
    Wang, Xiao
    Li, Liang
    Cheng, Shuo
    Chen, Zheng
    Li, Guang
    Zhang, Lu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 8513 - 8527