Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine Max L.)

被引:69
|
作者
Qin, Lu [1 ]
Han, Peipei [1 ]
Chen, Liyu [2 ]
Walk, Thomas C. [3 ]
Li, Yinshui [1 ]
Hu, Xiaojia [1 ]
Xie, Lihua [1 ]
Liao, Hong [2 ]
Liao, Xing [1 ]
机构
[1] Chinese Acad Agr Sci, Oil Crops Res Inst, Minist Agr, Key Lab Biol & Genet Improvement Oil Crops, Wuhan, Hubei, Peoples R China
[2] Fujian Agr & Forestry Univ, Root Biol Ctr, Fuzhou, Fujian, Peoples R China
[3] Golden Fidel LLC, St Louis, MO USA
来源
FRONTIERS IN PLANT SCIENCE | 2017年 / 8卷
基金
中国国家自然科学基金;
关键词
soybean; NRAMP gene family; nutrient deficiency; divalent metal toxicity; nodules; METAL TRANSPORTER; IRON TRANSPORT; NATURAL-RESISTANCE; ARABIDOPSIS-THALIANA; CADMIUM UPTAKE; HIGHER-PLANTS; RICE; MANGANESE; PROTEIN; STRESS;
D O I
10.3389/fpls.2017.01436
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The NRAMP (natural resistance associated macrophage protein) family of genes has been widely characterized in organisms ranging from bacteria to yeast, plants, mice, and humans. This gene family plays vital roles in divalent metal ion transport across cellular membranes. As yet, comprehensive analysis of NRAMP family genes has not been reported for soybean. In this study, bioinformatics analysis was conducted to identify 13 soybean NRAMP genes, along with their gene structures, phylogenetic relationships, and transmembrane domains. Expression analysis suggests that GmNRAMP genes function in numerous tissues and development stages. Moreover, soybean NRAMP genes were differentially regulated by deficiencies of N, P, K, Fe, and S, along with toxicities of Fe, Cu, Cd, and Mn. These results indicate that GmNRAMP genes function in many nutrient stress pathways, and might be involved in crosstalk among nutrient stress pathways. Subcellular localization analysis in Arabidopsis protoplasts confirmed the tonoplast or plasma membrane localization of selected soybean NRMAP proteins. Protein-protein interaction analysis found that the networks of three GmNRAMP proteins which putatively interact with nodulin-like proteins, almost distinct from the network that is common to the other 10 soybean NRAMP proteins. Subsequent qRT-PCR results confirmed that these three GmNRMAP genes exhibited enhanced expression in soybean nodules, suggesting potential functions in the transport of Fe or other metal ions in soybean nodules. Overall, the systematic analysis of the GmNRAMP gene family reported herein provides valuable information for further studies on the biological roles of GmNRAMPs in divalent metal ion transport in various soybean tissues under numerous nutrient stresses and soybean-rhizobia symbiosis.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Genome-wide analysis and expression profiling of the PIN auxin transporter gene family in soybean (Glycine max)
    Yongqin Wang
    Chenglin Chai
    Babu Valliyodan
    Christine Maupin
    Brad Annen
    Henry T. Nguyen
    BMC Genomics, 16
  • [32] Genome wide analysis of PHD finger family in Soybean (Glycine max)
    Wu, Qi
    Wang, Chuan Tang
    ENVIRONMENTAL ENGINEERING, PTS 1-4, 2014, 864-867 : 2503 - 2508
  • [33] Identification and Expression Analysis of Soybean (Glycine max L.) Dynamin Genes Reveal Their Involvements in Plant Development and Stress Response
    Duan, Xiangbo
    Xu, Yanang
    Zhang, Ke
    Liu, Zhouli
    Yu, Yang
    TROPICAL PLANT BIOLOGY, 2024, 17 (03) : 180 - 195
  • [34] Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.)
    Wang, Wei
    Zhao, Peng
    Zhou, Xue-mei
    Xiong, Han-xian
    Sun, Meng-xiang
    PLANT CELL REPORTS, 2015, 34 (09) : 1579 - 1592
  • [35] Identification of loci and candidate genes for plant height in soybean (Glycine max) via genome-wide association study
    Jing, Yan
    Zhao, Xue
    Wang, Jun
    Lian, Ming
    Teng, Weili
    Qiu, Lijuan
    Han, Yingpeng
    Li, Wenbin
    PLANT BREEDING, 2019, 138 (06) : 721 - 732
  • [36] Genome-Wide Identification of the Phytocyanin Gene Family and Its Potential Function in Salt Stress in Soybean (Glycine max (L.) Merr.)
    Wang, Li
    Zhang, Jinyu
    Li, Huici
    Zhang, Gongzhan
    Hu, Dandan
    Zhang, Dan
    Xu, Xinjuan
    Yang, Yuming
    Huang, Zhongwen
    AGRONOMY-BASEL, 2023, 13 (10):
  • [37] Genome-wide identification and expression analysis of bZIP gene family in Carthamus tinctorius L.
    Li, Haoyang
    Li, Lixia
    ShangGuan, Guodong
    Jia, Chang
    Deng, Sinan
    Noman, Muhammad
    Liu, Yilin
    Guo, Yongxin
    Han, Long
    Zhang, Xiaomei
    Dong, Yuanyuan
    Ahmad, Naveed
    Du, Linna
    Li, Haiyan
    Yang, Jing
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [38] Genome-wide identification of the wall-associated kinase gene family and their expression patterns under various abiotic stresses in soybean (Glycine max (L.) Merr)
    Li, Xiangnan
    Qi, Sifei
    Meng, Lingzhi
    Su, Peisen
    Sun, Yongwang
    Li, Nan
    Wang, Dan
    Fan, Yinglun
    Song, Yong
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [39] Genome-Wide Identification, Characterization and Expression Analysis of Soybean CHYR Gene Family
    Jia, Bowei
    Wang, Yan
    Zhang, Dajian
    Li, Wanhong
    Cui, Hongli
    Jin, Jun
    Cai, Xiaoxi
    Shen, Yang
    Wu, Shengyang
    Guo, Yongxia
    Sun, Mingzhe
    Sun, Xiaoli
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (22)
  • [40] Genome-wide identification, characterization, and expression analysis of MIPS family genes in legume species
    Jacob, Feba
    Hamid, Rasmieh
    Ghorbanzadeh, Zahra
    Valsalan, Ravisankar
    Ajinath, Lavale Shivaji
    Mathew, Deepu
    BMC GENOMICS, 2024, 25 (01):