Online clutter estimation using a Gaussian kernel density estimator for multitarget tracking

被引:13
作者
Chen, Xin [1 ]
Tharmarasa, Ratnasingham [1 ]
Kirubarajan, Thia [1 ]
McDonald, Mike [2 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada
[2] Radar Syst Def R&D Canada Ottawa, Surveillance Radar Grp, Ottawa, ON, Canada
关键词
ALGORITHM;
D O I
10.1049/iet-rsn.2014.0037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the spatial distribution of false alarms is assumed to be a non-homogeneous Poisson point (NHPP) process. Then, a new method is developed under the kernel density estimation (KDE) framework to estimate the spatial intensity of false alarms for the multitarget tracking problem. In the proposed method, the false alarm spatial intensity estimation problem is decomposed into two subproblems: (i) estimating the number of false alarms in one scan and (ii) estimating the variation of the intensity function value in the measurement space. Under the NHPP assumption, the only parameter that needs to be estimated for the first subproblem is the mean of false alarm number, and the empirical mean is used here as the maximum likelihood estimate of that parameter. Then, for the second subproblem, an online multivariate local adaptive Gaussian kernel density estimator is proposed. Furthermore, the proposed estimation method is seamlessly integrated with widely used multitarget trackers, like the joint integrated probabilistic data association algorithm and the multiple hypotheses tracking algorithm. Simulation results show that the proposed KDE-based method can provide a better estimate of the false alarm spatial intensity and help the multitarget trackers yield superior performance in scenarios with spatially non-homogeneous false alarms.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 1995, Multitarget-Multisensor Tracking:Principles and Techniques
[2]  
[Anonymous], 2003, Statistical Inference and Simulation for Spatial Point Processes
[3]  
[Anonymous], THESIS U W AUSTR PER
[4]   Dimensionless score function for multiple hypothesis tracking [J].
Bar-Shalom, Yaakov ;
Blackman, Sam S. ;
Fitzgerald, Robert J. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2007, 43 (01) :392-400
[5]  
Brookes M., 2005, The matrix reference manual
[6]   Integrated Clutter Estimation and Target Tracking using Poisson Point Processes [J].
Chen, X. ;
Tharmarasa, R. ;
Pelletier, M. ;
Kirubarajan, T. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (02) :1210-1235
[7]  
Chen X., 2011, P 14 C INF FUS CHIC
[8]   Integrated Bayesian Clutter Estimation with JIPDA/MHT Trackers [J].
Chen, Xin ;
Tharmarasa, R. ;
Pelletier, Michel ;
Kirubarajan, T. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (01) :395-414
[9]  
Daley D.J., 2002, An Introduction to the Theory of Point Processes, V1
[10]   Cross-validation bandwidth matrices for multivariate kernel density estimation [J].
Duong, T ;
Hazelton, ML .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (03) :485-506