Attitude and Position Estimation for an UAV Swarm using Consensus Kalman Filtering

被引:0
|
作者
D'Amato, E. [1 ]
Notaro, I. [1 ]
Mattei, M. [1 ]
Tartaglione, G. [2 ]
机构
[1] Univ Naples 2, Dept Ind & Informat Engn, I-81031 Aversa, CE, Italy
[2] Univ Naples Parthenope, Dept Engn, I-80143 Naples, Italy
来源
2015 2ND IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE) | 2015年
关键词
Consensun Estimation; Kalman Filtering; Swarm; Unmanned Aerial Vehicles; Attitude and Position Estimation;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents the application of a distributed attitude and position estimation algorithm to a swarm of cooperating UAVs with heterogeneous sensors on board. The algorithm, based on a Consensus Extended Kalman Filtering (CEKF) to account for nonlinearities, is implemented assuming kinematic relationships. Numerical simulations are presented on different flight scenarios to evaluate the benefits of dealing with prior and novel information in a separate way on the basis of recent theoretical results on CEKF. Inertial and vision sensors are supposed to be mounted on board of the aircraft. Realistic flight scenarios are analyzed in the light of possible time communication delays among the agents.
引用
收藏
页码:519 / 524
页数:6
相关论文
共 50 条
  • [31] Attitude/Position Estimation of Rigid-Body using Inertial and Vision Sensors
    Sun, Shihao
    Jia, Yingmin
    JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2016, 3 (02): : 102 - 106
  • [32] Attitude/Position Estimation of Rigid-Body using Inertial and Vision Sensors
    Sun, Shihao
    Jia, Yingmin
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2016), 2016, : 365 - 368
  • [33] UAV Sensor FDI in Duplex Attitude Estimation Architectures Using a Set-Based Approach
    D'Amato, Egidio
    Mattei, Massimiliano
    Notaro, Immacolata
    Scordamaglia, Valerio
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (10) : 2465 - 2475
  • [34] Kalman-filtering-based angular velocity estimation using infrared altitude information of spacecraft
    Shi, Y
    Zhang, XD
    OPTICAL ENGINEERING, 2000, 39 (02) : 551 - 557
  • [35] Joint estimation of states and parameters of Hodgkin-Huxley neuronal model using Kalman filtering
    Lankarany, M.
    Zhu, W. -P.
    Swamy, M. N. S.
    NEUROCOMPUTING, 2014, 136 : 289 - 299
  • [36] Noise variance speech estimation for Kalman filtering of noisy speech
    Kim, W
    Ko, HS
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2001, E84D (01) : 155 - 160
  • [37] Intramedia synchronization control based on delay estimation by Kalman filtering
    Treetasanatavorn, S
    Yoshida, T
    Sakai, Y
    IEICE TRANSACTIONS ON COMMUNICATIONS, 1998, E81B (05) : 1051 - 1061
  • [38] Kalman Filtering with Scheduled Measurements - Part I: Estimation Framework
    You, Keyou
    Xie, Lihua
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 2251 - 2256
  • [39] Aquifer parameter estimation by extended Kalman filtering and boundary elements
    ElHarrouni, K
    Ouazar, D
    Wrobel, LC
    Cheng, AHD
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1997, 19 (03) : 231 - 237
  • [40] Performance Evaluation for Tracking a Malicious UAV using an Autonomous UAV Swarm
    Arnold, Christopher
    Brown, Jason
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 707 - 712