Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast &ITOgataea polymorpha&IT

被引:43
作者
Numamoto, Minori [1 ]
Maekawa, Hiromi [1 ]
Kaneko, Yoshinobu [1 ]
机构
[1] Osaka Univ, Grad Sch Engn, Yeast Genet Resources Lab, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
关键词
CRISPR/Cas9; Genome editing; Ogataea polymorpha; tRNA processing; Methylotrophic yeast; MULTIPLEX; ENDONUCLEASE; GENES;
D O I
10.1016/j.jbiosc.2017.06.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The methylotrophic yeast Ogataea polymorpha (syn. Hansenula polymorpha) is an attractive industrial non-conventional yeast showing high thermo-tolerance (up to 50 degrees C) and xylose assimilation. However, genetic manipulation of O. polymorpha is often laborious and time-consuming because it has lower homologous recombination efficiency relative to Saccharomyces cerevisiae. To overcome this disadvantage, we applied the CRISPR/Cas9 system as a powerful genome editing tool in O. polymorpha. In this system, both single guide RNA (sgRNA) and endonuclease Cas9 were expressed by a single autonomously-replicable plasmid and the sgRNA portion could be easily changed by using PCR and In-Fusion cloning techniques. Because the mutation efficiency of the CRISPR/Cas9 system was relatively low when the sgRNA was expressed under the control of the OpSNR6 promoter, the tRNA(CUG) gene was used for sgRNA expression. The editing efficiency of this system ranged from 17% to 71% of transformants in several target genes tested (ADE12, PHO1, PHO11, and PHO84). These findings indicate that genetic manipulation of O. polymorpha will be more convenient and accelerated by using this CRISPR/Cas9 system. (C) 2017, The Society for Biotechnology, Japan. All rights reserved.
引用
收藏
页码:487 / 492
页数:6
相关论文
共 31 条
[1]   THE PHO84 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES AN INORGANIC-PHOSPHATE TRANSPORTER [J].
BUNYA, M ;
NISHIMURA, M ;
HARASHIMA, S ;
OSHIMA, Y .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (06) :3229-3238
[2]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[3]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[4]   Heritable genome editing in C. elegans via a CRISPR-Cas9 system [J].
Friedland, Ari E. ;
Tzur, Yonatan B. ;
Esvelt, Kevin M. ;
Colaiacovo, Monica P. ;
Church, George M. ;
Calarco, John A. .
NATURE METHODS, 2013, 10 (08) :741-+
[5]   Heterologous protein production in methylotrophic yeasts [J].
Gellissen, G .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 54 (06) :741-750
[6]   GENETIC-ANALYSIS IN THE METHYLOTROPHIC YEAST HANSENULA-POLYMORPHA [J].
GLEESON, MA ;
SUDBERY, PE .
YEAST, 1988, 4 (04) :293-303
[7]  
González C, 1999, YEAST, V15, P1323, DOI 10.1002/(SICI)1097-0061(19990930)15:13<1323::AID-YEA459>3.3.CO
[8]  
2-T
[9]   Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro [J].
Hinz, John M. ;
Laughery, Marian F. ;
Wyrick, John J. .
BIOCHEMISTRY, 2015, 54 (48) :7063-7066
[10]   Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas [J].
Horwitz, Andrew A. ;
Walter, Jessica M. ;
Schubert, Max G. ;
Kung, Stephanie H. ;
Hawkins, Kristy ;
Platt, Darren M. ;
Hernday, Aaron D. ;
Mahatdejkul-Meadows, Tina ;
Szeto, Wayne ;
Chandran, Sunil S. ;
Newman, Jack D. .
CELL SYSTEMS, 2015, 1 (01) :88-96