A semilinear fourth order elliptic problem with exponential nonlinearity

被引:87
作者
Arioli, G
Gazzola, F
Grunau, HC
Mitidieri, E
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Otto von Guericke Univ, Fak Math, D-39016 Magdeburg, Germany
[3] Univ Trieste, Dipartimento Sci Matemat, I-34100 Trieste, Italy
关键词
biharmonic operator; super-subsolutions; computer assisted proof;
D O I
10.1137/S0036141002418534
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a semilinear fourth order elliptic problem with exponential nonlinearity. Motivated by a question raised in [P.-L. Lions, SIAM Rev., 24 (1982), pp. 441-467], we partially extend results known for the corresponding second order problem. Several new difficulties arise and many problems still remain to be solved. We list those of particular interest in the final section.
引用
收藏
页码:1226 / 1258
页数:33
相关论文
共 38 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]  
Amann H, 1990, DEGRUYTER STUDIES MA, V13
[4]   Symbolic dynamics for the Henon-Heiles Hamiltonian on the critical level [J].
Arioli, G ;
Zgliczynski, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 171 (01) :173-202
[5]  
AZORERO JG, 1994, NONLINEAR ANAL-THEOR, V22, P481
[6]  
Bebernes J., 1989, Applied Mathematical Sciences, V83
[7]  
BOGGIO T, 1905, REND CIRC MAT PALERM, V20, P97
[8]  
Brezis H., 1997, Rev. Mat. Univ. Complut. Madrid, V10, P443
[9]  
Brezis H., 1996, Adv. Differential Equations, V1, P73
[10]  
Chandrasekhar S., 1967, An introduction to the study of stellar structure