The method of fundamental solutions for nonlinear functionally graded materials

被引:84
作者
Marin, Liviu
Lesnic, Daniel
机构
[1] Univ Nottingham, Sch Mech Mat & Mfg Engn, Nottingham NG7 2RD, England
[2] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
关键词
functionally graded materials (FGMs); method of fundamental solution (MFS); heat conduction; Bi-materials;
D O I
10.1016/j.ijsolstr.2007.03.014
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we investigate the application of the method of fundamental solutions (MFS) to two-dimensional steady-state heat conduction problems for both isotropic and anisotropic, single and composite (bi-materials), nonlinear functionally graded materials (FGMs). In the composite case, the interface continuity conditions are approximated in the same manner as the boundary conditions. The method is tested on several examples and its relative merits and disadvantages are discussed. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6878 / 6890
页数:13
相关论文
共 24 条
[1]  
Berger JR, 1999, INT J NUMER METH ENG, V45, P1681, DOI 10.1002/(SICI)1097-0207(19990820)45:11<1681::AID-NME649>3.0.CO
[2]  
2-T
[3]   Fundamental solutions for steady-state heat transfer in an exponentially graded anisotropic material [J].
Berger, JR ;
Martin, PA ;
Mantic, V ;
Gray, LJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (02) :293-303
[4]   The method of fundamental solutions for layered elastic materials [J].
Berger, JR ;
Karageorghis, A .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (10) :877-886
[5]   Green's function for steady-state heat conduction in a bimaterial composite solid [J].
Berger, JR ;
Skilowitz, JL ;
Tewary, VK .
COMPUTATIONAL MECHANICS, 2000, 25 (06) :627-633
[6]   FUNDAMENTAL-SOLUTIONS METHOD FOR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
BOGOMOLNY, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (04) :644-669
[7]   A COMPARISON OF THE BOUNDARY ELEMENT AND SUPERPOSITION METHODS [J].
BURGESS, G ;
MAHAJERIN, E .
COMPUTERS & STRUCTURES, 1984, 19 (5-6) :697-705
[8]   A boundary element method for the solution of a class of steady-state problems for anisotropic media [J].
Clements, DL ;
Budhi, WS .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (02) :462-465
[9]   The method of fundamental solutions for elliptic boundary value problems [J].
Fairweather, G ;
Karageorghis, A .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 9 (1-2) :69-95
[10]  
GOLDBERG MA, 1999, BOUNDARY INTEGRAL ME, P105