Detection and computation of high codimension bifurcations in diffuse predator-prey systems

被引:3
作者
Diouf, A. [1 ]
Mokrani, H. [2 ]
Ngom, D. [1 ]
Hague, M. [4 ]
Camara, B. I. [3 ]
机构
[1] Univ Assane Seck Ziguinchor, Lab Math & Applicat, Route Diabir,BP 523, Ziguinchor, Senegal
[2] Ziguinchor Inst Polytech, Ave Univ Assane Seck Ziguinchor, Ziguinchor, Senegal
[3] Univ Lorraine, CNRS, Lab Interdisciplinaire Environm Continentaux, UMR 7360, Campus Bridoux,8 Rue Gen Delestraint, F-57070 Metz, France
[4] Nottingham Univ Hosp NHS, Univ Div Anaesthesia Intens Care, Queens Med Ctr Campus,Derby Rd, Derby, England
关键词
Reaction-diffusion; Turing; Turing-Transcritical; Turing-Bogdanov-Taken; Turing-Hopf-Andronov; Turing-Saddle-node; MODIFIED LESLIE-GOWER; PATTERN-FORMATION; MODEL; CHAOS;
D O I
10.1016/j.physa.2018.10.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider reaction-diffusion model with modified Leslie-Gower and Holling-type II functional response and by varying simultaneously three model parameters, our model exhibits different types of complex dynamics. This allowed us to delimit several bifurcation surfaces with higher codimension corresponding to: Turing, TuringTranscritical, Turing-Bogdanov-Taken, Turing-Hopf-Andronov, Turing-Saddle-node. Moreover by varying at least three bifurcation parameters, we show that small variations in the ratio of the diffusion coefficients can significantly alter bifurcation structure. Finally, the paper ends with the emergence of spatio-temporal patterns via numerical simulations. These simultaneous parameter variations leaded to spatio-temporal local and global bifurcations which are always catastrophic. Our results give new insights about how simultaneous changes in environmental and life history parameters drive different distribution dynamics of predator-prey populations. This only underscores the importance of including global bifurcations in the analysis of food chain models. Such results can be used to improve ecological decision-making on species conservation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:402 / 411
页数:10
相关论文
共 33 条
[1]  
[Anonymous], GLOB J PURE APPL MAT
[2]  
[Anonymous], DISCRETE DYN NAT SOC
[3]  
[Anonymous], BERICHTE FORSCHUNGSZ
[4]   Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes [J].
Aziz-Alaoui, MA ;
Okiye, MD .
APPLIED MATHEMATICS LETTERS, 2003, 16 (07) :1069-1075
[5]   Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations [J].
Baurmann, Martin ;
Gross, Thilo ;
Feudel, Ulrike .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (02) :220-229
[6]   Using machine learning to predict catastrophes in dynamical systems [J].
Berwald, Jesse ;
Gedeon, Tomas ;
Sheppard, John .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) :2235-2245
[7]  
Camara B. I., 2009, DYNAM CONT DIS SER B, V16, P479
[8]   MATHEMATICAL MODELING OF GLIOMA THERAPY USING ONCOLYTIC VIRUSES [J].
Camara, Baba Issa ;
Mokrani, Houda ;
Afenya, Evans .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2013, 10 (03) :565-578
[9]  
Casagrandi R, 2002, CONSERV ECOL, V6
[10]   Forecasting Bifurcations from Large Perturbation Recoveries in Feedback Ecosystems [J].
D'Souza, Kiran ;
Epureanu, Bogdan I. ;
Pascual, Mercedes .
PLOS ONE, 2015, 10 (09)