Optimal tests of noncorrelation between multivariate time series

被引:4
作者
Hallin, Marc [1 ]
Saidi, Abdessamad
机构
[1] ECARES, Inst Res Stat, Brussels, Belgium
[2] Univ Libre Bruxelles, Dept Math, Brussels, Belgium
[3] Univ Montreal, Dept Res Math & Stat, Montreal, PQ H3C 3J7, Canada
关键词
Haugh-El Himdi-Roy tests; Koch-Yang-Hallin-Saidi tests; local asymptotic normality; tests of noncorrelation; time series; vector autoregressive model;
D O I
10.1198/016214507000000239
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of testing noncorrelation between two multivariate time series is considered. Assuming that the global process admits a joint vector autoregressive (VAR) representation, noncorrelation between the two component series is equivalent to the hypothesis that all off-diagonal blocks in the matrix coefficients and the innovation covariance of the joint VAR representation are zero. We establish an adequate local asymptotic normality (LAN) property for this VAR model in the vicinity of noncorrelation. This LAN structure allows construction of optimal pseudo-Gaussian tests-that is, tests that are locally and asymptotically optimal under Gaussian innovations, but remain valid under non-Gaussian ones-for the null hypothesis of noncorrelation and for comparing their local asymptotic powers with those of the heuristic tests (Haugh-El Himdi-Roy and Koch-Yang-Hallin-Saidi) proposed in the literature.
引用
收藏
页码:938 / 951
页数:14
相关论文
共 50 条
[31]   Interaction-based Clustering of Multivariate Time Series [J].
Plant, Claudia ;
Wohlschlaeger, Afra M. ;
Zherdin, Andrew .
2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, :914-919
[32]   Clustering multivariate time series using energy distance [J].
Davis, Richard A. A. ;
Fernandes, Leon ;
Fokianos, Konstantinos .
JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (5-6) :487-504
[33]   A semiparametric approach for modelling multivariate nonlinear time series [J].
Samadi, S. Yaser ;
Hajebi, Mahtab ;
Farnoosh, Rahman .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (04) :668-687
[34]   ShapeFormer: Shapelet Transformer for Multivariate Time Series Classification [J].
Le, Xuan-May ;
Luo, Ling ;
Aickelin, Uwe ;
Tran, Minh-Tuan .
PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, :1484-1494
[35]   TIME-SERIES OF MULTIVARIATE DATA IN AQUATIC ECOLOGY [J].
COBELAS, MA ;
VERDUGO, M ;
ROJO, C .
AQUATIC SCIENCES, 1995, 57 (03) :185-198
[36]   Multivariate time-series analysis and diffusion maps [J].
Lian, Wenzhao ;
Talmon, Ronen ;
Zaveri, Hitten ;
Carin, Lawrence ;
Coifman, Ronald .
SIGNAL PROCESSING, 2015, 116 :13-28
[37]   SimilarityTS: Toolkit for the evaluation of similarity for multivariate time series [J].
Fernandez-Montes, Alejandro ;
Fernandez-Cerero, Damian ;
Escalera-Gonzalez, Felipe ;
Jakobik, Agnieszka ;
Bermejo, Belen ;
Juiz, Carlos .
SOFTWAREX, 2023, 24
[38]   Multiscale and Multivariate Time Series Clustering: A New Approach [J].
Tokotoko, Jannai ;
Govan, Rodrigue ;
Lemonnier, Hugues ;
Selmaoui-Folcher, Nazha .
FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 :283-293
[39]   Visualizing Frequent Patterns in Large Multivariate Time Series [J].
Hao, M. ;
Marwah, M. ;
Janetzko, H. ;
Sharma, R. ;
Keim, D. A. ;
Dayal, U. ;
Patnaik, D. ;
Ramakrishnan, N. .
VISUALIZATION AND DATA ANALYSIS 2011, 2011, 7868
[40]   Unit root tests for time series with outliers [J].
Shin, DW ;
Sarkar, S ;
Lee, JH .
STATISTICS & PROBABILITY LETTERS, 1996, 30 (03) :189-197