Legendre spectral projection methods for weakly singular Hammerstein integral equations of mixed type

被引:1
作者
Patel, Subhashree [1 ]
Panigrahi, Bijaya Laxmi [1 ]
机构
[1] Sambalpur Univ, Dept Math, Sambalpur 768019, Odisha, India
关键词
Hammerstein integral equations of mixed type; Weakly singular kernels; Legendre spectral projection methods; Multi-projection methods; 45G05; 65R20; NUMERICAL-SOLUTION; COLLOCATION METHODS;
D O I
10.1007/s41478-019-00175-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work provides the Legendre spectral projection (Galerkin and collocation), iterated Legendre spectral projection, Legendre spectral multi-projection and iterated Legendre spectral multi-projection methods to approximate the solution of weakly singular Hammerstein integral equations of mixed type. The convergence rates of approximate solutions to the exact solutions are obtained for all the above four methods in both L2 and infinity norm. The comparison of convergence rates for all these methods have been discussed. We also have shown that iterated Galerkin improves over Galerkin, multi-Galerkin improves over iterated Galerkin and iterated multi-Galerkin improves over multi-Galerkin in L2 norm using Legendre polynomial bases.
引用
收藏
页码:387 / 413
页数:27
相关论文
共 19 条
[1]  
Ahues M., 2001, SPECTRAL COMPUTATION, DOI [10.1201/9781420035827, DOI 10.1201/9781420035827]
[2]   Numerical solutions of weakly singular Hammerstein integral equations [J].
Allouch, C. ;
Sbibih, D. ;
Tahrichi, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 :118-128
[3]  
Atkinson K.E., 1997, The Numerical Solution of Integral Equations of the Second Kind
[4]  
Canuto C., 2006, SCIENTIF COMPUT
[5]   Convergence analysis of Legendre spectral projection methods for Hammerstein integral equations of mixed type [J].
Das P. ;
Sahani M.M. ;
Nelakanti G. .
Journal of Applied Mathematics and Computing, 2015, 49 (1-2) :529-555
[6]   NUMERICAL SOLVABILITY OF HAMMERSTEIN INTEGRAL-EQUATIONS OF MIXED TYPE [J].
GANESH, M ;
JOSHI, MC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (01) :21-31
[7]  
Ganesh M., 1989, J INTEGRAL EQU APPL, V2, P107, DOI [10.1216/JIE-1989-2-1-107, DOI 10.1216/JIE-1989-2-1-107]
[8]   Numerical solution of Hammerstein integral equations of mixed type using the Sinc-collocation method [J].
Hashemizadeh, E. ;
Rostami, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :31-39
[9]  
Hashemizadeh E., 2018, ASIAN-EUR J MATH, V11
[10]   Numerical solution of Fredholm integral equations of the second kind by using integral mean value theorem II. High dimensional problems [J].
Heydari, M. ;
Avazzadeh, Z. ;
Navabpour, H. ;
Loghmani, G. B. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (1-2) :432-442