Automated detection of shockable ECG signals: A review

被引:49
作者
Hammad, Mohamed [1 ]
Kandala, Rajesh N. V. P. S. [2 ]
Abdelatey, Amira [3 ]
Abdar, Moloud [4 ]
Zomorodi-Moghadam, Mariam [5 ,6 ]
Tan, Ru San [7 ,8 ]
Acharya, U. Rajendra [9 ,10 ,11 ]
Plawiak, Joanna [6 ]
Tadeusiewicz, Ryszard [12 ]
Makarenkov, Vladimir [13 ]
Sarrafzadegan, Nizal [14 ,15 ]
Khosravi, Abbas [4 ]
Nahavandi, Saeid [4 ]
Abd EL-Latif, Ahmed A. [16 ,17 ,18 ]
Plawiak, Pawel [6 ,19 ]
机构
[1] Menoufia Univ, Fac Comp & Informat, Dept Informat Technol, Menoufia, Egypt
[2] GayatriVidyaParishad Coll Engn A, Dept ECE, Visakhapatnam, Andhra Pradesh, India
[3] Menoufia Univ, Fac Comp & Informat, Dept Comp Sci, Menoufia, Egypt
[4] Deakin Univ, Inst Intelligent Syst Res & Innovat IISRI, Geelong, Vic, Australia
[5] Ferdowsi Univ Mashhad, Dept Comp Engn, Mashhad, Razavi Khorasan, Iran
[6] Cracow Univ Technol, Fac Comp Sci & Telecommun, Dept Comp Sci, Warszawska 24, PL-31155 Krakow, Poland
[7] Natl Heart Ctr Singapore, Dept Cardiol, Singapore, Singapore
[8] Duke NUS Med Sch, Singapore, Singapore
[9] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore
[10] Singapore Sch Social Sci, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[11] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
[12] AGH Univ Sci & Technol, Dept Biocybernet & Biomed Engn, Krakow, Poland
[13] Univ Quebec Montreal, Dept Comp Sci, Montreal, PQ H2X 3Y7, Canada
[14] Isfahan Univ Med Sci, Cardiovasc Res Inst, Isfahan Cardiovasc Res Ctr, Esfahan 8174673461, Iran
[15] Univ British Columbia, Sch Populat & Publ Hlth, Fac Med, Vancouver, BC, Canada
[16] Menoufia Univ, Fac Sci, Math & Comp Sci Dept, Shibin Al Kawm 32511, Egypt
[17] Nile Univ, Sch Informat Technol & Comp Sci, Giza, Egypt
[18] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150080, Peoples R China
[19] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
关键词
Electrocardiogram (ECG); Arrhythmia; Computer-aided arrhythmia classification (CAAC); Signal processing; Machine learning; Deep learning; Ensemble learning; Feature extraction; Feature selection; Optimization; CONVOLUTION NEURAL-NETWORK; THREATENING VENTRICULAR-ARRHYTHMIAS; DEEP LEARNING APPROACH; REAL-TIME DETECTION; ATRIAL-FIBRILLATION; RECURRENCE PLOTS; CLASSIFICATION; DIAGNOSIS; ALGORITHM; MODEL;
D O I
10.1016/j.ins.2021.05.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sudden cardiac death from lethal arrhythmia is a preventable cause of death. Ventricular fibrillation and tachycardia are shockable electrocardiographic (ECG)rhythms that can respond to emergency electrical shock therapy and revert to normal sinus rhythm if diagnosed early upon cardiac arrest with the restoration of adequate cardiac pump function. However, manual inspection of ECG signals is a difficult task in the acute setting. Thus, computer-aided arrhythmia classification (CAAC) systems have been developed to detect shockable ECG rhythm. Traditional machine learning and deep learning methods are now progressively employed to enhance the diagnostic accuracy of CAAC systems. This paper reviews the state-of-the-art machine and deep learning based CAAC expert systems for shockable ECG signal recognition, discussing their strengths, advantages, and drawbacks. Moreover, unique bispectrum and recurrence plots are proposed to represent shockable and non-shockable ECG signals. Deep learning methods are usually more robust and accurate than standard machine learning methods but require big data of good quality for training. We recommend collecting large accessible ECG datasets with a meaningful proportion of abnormal cases for research and development of superior CAAC systems. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:580 / 604
页数:25
相关论文
共 119 条
[1]  
Abdar M., 2020, ARXIV PREPRINT ARXIV
[2]   Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions [J].
Abu Anas, Emran M. ;
Lee, Soo Y. ;
Hasan, Md K. .
BIOMEDICAL ENGINEERING ONLINE, 2010, 9
[3]   Characterization of focal EEG signals: A review [J].
Acharya, U. Rajendra ;
Hagiwara, Yuki ;
Deshpande, Sunny Nitin ;
Suren, S. ;
Koh, Joel En Wei ;
Oh, Shu Lih ;
Arunkumar, N. ;
Ciaccio, Edward J. ;
Lim, Choo Min .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 91 :290-299
[4]   Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Raghavendra, U. ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Hagiwara, Yuki .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 79 :952-959
[5]   INSTANCE-BASED LEARNING ALGORITHMS [J].
AHA, DW ;
KIBLER, D ;
ALBERT, MK .
MACHINE LEARNING, 1991, 6 (01) :37-66
[6]   Detection of myocardial infarction based on novel deep transfer learning methods for urban healthcare in smart cities [J].
Alghamdi, Ahmed ;
Hammad, Mohamed ;
Ugail, Hassan ;
Abdel-Raheem, Asmaa ;
Muhammad, Khan ;
Khalifa, Hany S. ;
Abd El-Latif, Ahmed A. .
MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) :14913-14934
[7]   Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators [J].
Amann, Anton ;
Tratnig, Robert ;
Unterkofler, Karl .
BIOMEDICAL ENGINEERING ONLINE, 2005, 4 (1)
[8]   Detecting ventricular fibrillation by time-delay methods [J].
Amann, Anton ;
Tratnig, Robert ;
Unterkofler, Karl .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (01) :174-177
[9]   A deep learning approach for real-time detection of atrial fibrillation [J].
Andersen, Rasmus S. ;
Peimankar, Abdolrahman ;
Puthusserypady, Sadasivan .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 115 :465-473
[10]   A simple time domain algorithm for the detection of ventricular fibrillation in electrocardiogram [J].
Arafat, Muhammad Abdullah ;
Chowdhury, Abdul Wadud ;
Hasan, Md Kamrul .
SIGNAL IMAGE AND VIDEO PROCESSING, 2011, 5 (01) :1-10