Lusztig's conjecture as a moment graph problem

被引:19
作者
Fiebig, Peter [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
关键词
AFFINE WEYL GROUPS; HECKE ALGEBRAS; LIE-ALGEBRAS; REPRESENTATIONS; POLYNOMIALS;
D O I
10.1112/blms/bdq058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey a new approach towards Lusztig's conjecture on the irreducible characters of a reductive algebraic group over a field of positive characteristic. The main result that we review is that Lusztig's conjecture is implied by a multiplicity conjecture on the stalks of certain sheaves on a moment graph. This latter conjecture is known to hold if the underlying field is of characteristic 0. From this one can almost directly deduce the conjecture for fields of large enough characteristics; but using a Lefschetz-type theory on the moment graph, we can give an upper bound on the exceptions. Moreover, one can prove the multiplicity 1 case of the conjecture in full generality. In addition to a survey of the above results, we prove the equivalence between the original conjecture of Lusztig and its generic version, that is, the multiplicity conjecture for baby Verma modules for the corresponding Lie algebra.
引用
收藏
页码:957 / 972
页数:16
相关论文
共 50 条
[41]   Moment vanishing problem and positivity: Some examples [J].
Francoise, J. P. ;
Pakovich, F. ;
Yomdin, Y. ;
Zhao, W. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (01) :10-32
[42]   Charges solve the truncated complex moment problem [J].
Idrissi, K. ;
Zerouali, E. H. .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2018, 21 (04)
[43]   Serre's modularity conjecture (I) [J].
Khare, Chandrashekhar ;
Wintenberger, Jean-Pierre .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :485-504
[44]   A simple proof of Schmidt's conjecture [J].
Thanatipanonda, Thotsaporn 'Aek' .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (03) :413-415
[45]   Chai's conjecture for semiabelian Jacobians [J].
Overkamp, Otto .
COMPOSITIO MATHEMATICA, 2025, 161 (01) :120-147
[46]   A Local Version of Szpiro's Conjecture [J].
Bennett, Michael A. ;
Yazdani, Soroosh .
EXPERIMENTAL MATHEMATICS, 2012, 21 (02) :103-116
[47]   On Gouvea's conjecture on controlling the conductor [J].
Yamagami, A .
JOURNAL OF NUMBER THEORY, 2002, 94 (01) :90-102
[48]   Stability, fragility, and Rota's Conjecture [J].
Mayhew, Dillon ;
Whittle, Geoff ;
van Zwam, Stefan H. M. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (03) :760-783
[49]   Chui's conjecture in Bergman spaces [J].
Abakumov, Evgeny ;
Borichev, Alexander ;
Fedorovskiy, Konstantin .
MATHEMATISCHE ANNALEN, 2021, 379 (3-4) :1507-1532
[50]   Remarks on Serre's modularity conjecture [J].
Dieulefait, Luis .
MANUSCRIPTA MATHEMATICA, 2012, 139 (1-2) :71-89