Mesophilic anaerobic co-digestion of poultry dropping and Carica papaya peels: Modelling and process parameter optimization study

被引:59
作者
Dahunsi, S. O. [1 ]
Oranusi, S. [2 ]
Owolabi, J. B. [3 ]
Efeovbokhan, V. E. [4 ]
机构
[1] Landmark Univ, Dept Biol Sci, Omu Aran, Nigeria
[2] Covenant Univ, Dept Biol Sci, Ota, Nigeria
[3] All St Univ, Coll Med, Kingstown, St Vincent
[4] Covenant Univ, Dept Chem Engn, Ota, Nigeria
关键词
Biogas; Pawpaw; Methane; Microorganisms; Optimization; Pre-treatment; ARTIFICIAL NEURAL-NETWORK; RESPONSE-SURFACE METHODOLOGY; BIOGAS PRODUCTION; WASTE-WATER; PIG MANURE; ENHANCEMENT; PRETREATMENT; PERFORMANCE; SLUDGE;
D O I
10.1016/j.biortech.2016.05.118
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The study evaluated anaerobic co-digestion of poultry dropping and pawpaw peels and the optimization of important process parameters. The physic-chemical analyses of the substrates were done using standard methods after application of mechanical, thermal and chemical pre-treatments methods. Gas chromatography analysis revealed the gas composition to be within the range of 66-68% methane and 18-23% carbon dioxide. The study equally revealed that combination of the different pre-treatment methods enhanced enormous biogas yield from the digestion. Optimization of the generated biogas data were carried out using the Response Surface Methodology and the Artificial Neural Networks. The coefficient of determination ( R-2) for RSM ( 0.9181) was lower compare to that of ANN ( 0.9828). This shows that ANN model gives higher accuracy than RSM model for the current. Further usage of Carica papaya peels for biogas generation is advocated. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:587 / 600
页数:14
相关论文
共 36 条
  • [1] Comparative evaluation of biogas production from Poultry droppings, Cow dung and Lemon grass
    Alfa, I. M.
    Dahunsi, S. O.
    Iorhemen, O. T.
    Okafor, C. C.
    Ajayi, S. A.
    [J]. BIORESOURCE TECHNOLOGY, 2014, 157 : 270 - 277
  • [2] Assessment of biofertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings
    Alfa, M. I.
    Adie, D. B.
    Igboro, S. B.
    Oranusi, U. S.
    Dahunsi, S. O.
    Akali, D. M.
    [J]. RENEWABLE ENERGY, 2014, 63 : 681 - 686
  • [3] American Public Health Association (APHA), 2012, STANDARD METHODS EXA
  • [4] Anon E.S., 2008, MAKING WINES HOME US
  • [5] Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance
    Astals, S.
    Musenze, R. S.
    Bai, X.
    Tannock, S.
    Tait, S.
    Pratt, S.
    Jensen, P. D.
    [J]. BIORESOURCE TECHNOLOGY, 2015, 181 : 97 - 104
  • [6] Ayandiran T.A., 2016, J KING SAUD UNIV SCI
  • [7] Ayandiran T.A., 2014, EGYPT J AQUATIC RES, V40, P291, DOI DOI 10.1016/j.ejar.2014.09.002
  • [8] Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter
    Betiku, Eriola
    Okunsolawo, Samuel S.
    Ajala, Sheriff O.
    Odedele, Olatunde S.
    [J]. RENEWABLE ENERGY, 2015, 76 : 408 - 417
  • [9] Modeling and optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peels as heterogeneous base catalyst: A case of artificial neural network vs. response surface methodology
    Betiku, Eriola
    Ajala, Sheriff Olalekan
    [J]. INDUSTRIAL CROPS AND PRODUCTS, 2014, 53 : 314 - 322
  • [10] Dahunsi S. O., 2013, British Biotechnology Journal, V3, P485