Homogeneous Ricci solitons

被引:57
作者
Jablonski, Michael [1 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 699卷
关键词
LIE-GROUPS; ISOMETRY GROUPS; FLOW; SOLVMANIFOLDS; MANIFOLDS; EINSTEIN; METRICS; NILMANIFOLDS;
D O I
10.1515/crelle-2013-0044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study metrics which are both homogeneous and Ricci soliton. If there exists a transitive solvable group of isometries on a Ricci soliton, we show that it is isometric to a solvsoliton. Moreover, unless the manifold is flat, it is necessarily simply-connected and diffeomorphic to R-n. In the general case, we prove that homogeneous Ricci solitons must be semi-algebraic Ricci solitons in the sense that they evolve under the Ricci flow by dilation and pullback by automorphisms of the isometry group. In the special case that there exists a transitive semi-simple group of isometries on a Ricci soliton, we show that such a space is in fact Einstein. In the compact case, we produce new proof that Ricci solitons are necessarily Einstein. Lastly, we characterize solvable Lie groups which admit Ricci soliton metrics.
引用
收藏
页码:159 / 182
页数:24
相关论文
共 31 条
[1]  
Alekseevskii D.V., 1975, Funct. Anal. Appl., V9, P97
[2]  
ALEKSEEVSKII DV, 1975, MAT SB, V96, P168
[3]   Three-dimensional Ricci solitons which project to surfaces [J].
Baird, Paul ;
Danielo, Laurent .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :65-91
[4]  
Chen BL, 2006, J DIFFER GEOM, V74, P119
[5]  
Chow B., 2004, MATH SURVEYS MONOGR, V110
[6]  
Glickenstein D, 2010, COMMUN ANAL GEOM, V18, P927
[7]   RIEMANNIAN ISOMETRY GROUPS CONTAINING TRANSITIVE REDUCTIVE SUBGROUPS [J].
GORDON, C .
MATHEMATISCHE ANNALEN, 1980, 248 (02) :185-192
[8]   ISOMETRY GROUPS OF RIEMANNIAN SOLVMANIFOLDS [J].
GORDON, CS ;
WILSON, EN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (01) :245-269
[9]   Linear stability of homogeneous Ricci solitons [J].
Guenther, Christine ;
Isenberg, James ;
Knopf, Dan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
[10]   Noncompact homogeneous Einstein spaces [J].
Heber, J .
INVENTIONES MATHEMATICAE, 1998, 133 (02) :279-352