On the reflexive edge strength of the circulant graphs

被引:8
作者
Basher, Mohamed [1 ]
机构
[1] Suez Univ, Fac Sci, Dept Math & Comp Sci, Suez, Egypt
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 09期
关键词
edge irregular reflexive labeling; reflexive edge strength; circulant graphs; IRREGULARITY STRENGTH; STRONG PRODUCT; NETWORKS;
D O I
10.3934/math.2021543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A labeling of a graph is an assignment that carries some sets of graph elements into numbers (usually the non negative integers). The total k-labeling is an assignment f(e) from the edge set to the set {1, 2, ..., k(e)} and assignment f(v) from the vertex set to the set {0, 2, 4, ..., 2k(v)}, where k = max{k(e), 2k(v)}. An edge irregular reflexive k-labeling of the graph G is the total k-labeling, if distinct edges have distinct weights, where the edge weight is defined as the sum of label of that edge and the labels of the end vertices. The minimum k for which the graph G has an edge irregular reflexive k-labeling is called the reflexive edge strength of the graph G, denoted by re s(G). In this paper we study the edge reflexive irregular k-labeling for some cases of circulant graphs and determine the exact value of the reflexive edge strength for several classes of circulant graphs.
引用
收藏
页码:9342 / 9365
页数:24
相关论文
共 38 条
[1]  
Agustin I. H., 2020, J. Phys.: Conf. Ser., V1543
[2]  
Ahmad A, 2012, AUSTRALAS J COMB, V54, P141
[3]   On edge irregularity strength of graphs [J].
Ahmad, Ali ;
Al-Mushayt, Omar Bin Saeed ;
Baca, Martin .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 :607-610
[4]   On Edge Irregular Total Labeling of Categorical Product of Two Cycles [J].
Ahmad, Ali ;
Baca, Martin ;
Siddiqui, Muhammad Kamran .
THEORY OF COMPUTING SYSTEMS, 2014, 54 (01) :1-12
[5]  
Ahmad A, 2013, ARS COMBINATORIA, V112, P129
[6]  
Ahmad A, 2012, ARS COMBINATORIA, V106, P449
[7]   IRREGULAR ASSIGNMENTS OF TREES AND FORESTS [J].
AIGNER, M ;
TRIESCH, E .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (04) :439-449
[8]  
Al-Mushayt O, 2012, AUSTRALAS J COMB, V53, P263
[9]   Irregularity strength of trees [J].
Amar, D ;
Togni, O .
DISCRETE MATHEMATICS, 1998, 190 (1-3) :15-38
[10]   A new upper bound for the total vertex irregularity strength of graphs [J].
Anholcer, Marcin ;
Kalkowski, Maciej ;
Przybylo, Jakub .
DISCRETE MATHEMATICS, 2009, 309 (21) :6316-6317