Prescribed mean curvature hypersurfaces in Hn+1(-1) with convex planar boundary, I

被引:0
|
作者
Barbosa, JLM
Earp, RS
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-24453900 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
mean curvature; hyperbolic space; Dirichlet problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study immersed prescribed mean curvature compact hypersurfaces with boundary in Hn+1 (-l). When the boundary is a convex planar smooth manifold with all principal curvatures greater than 1, we solve a nonparametric Dirichlet problem and use this, together with a general flux formula, to prove a parametric uniqueness result, in the class of all immersed compact hypersurfaces with the same boundary. We specialize this result to a constant mean curvature, obtaining a characterization of totally umbilic hypersurface caps.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [1] Prescribed Mean Curvature Hypersurfaces in Hn+1(-1) with Convex Planar Boundary, I
    J. Lucas M. Barbosa
    Ricardo Sa Earp
    Geometriae Dedicata, 1998, 71 (1) : 61 - 74
  • [2] Horo-Convex Hypersurfaces with Prescribed Shifted Gauss Curvatures in Hn+1
    Chen, Li
    Tu, Qiang
    Xiao, Kang
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) : 6349 - 6364
  • [3] Hypersurfaces with nonegative Ricci curvature in Hn+1
    Bonini, Vincent
    Ma, Shiguang
    Qing, Jie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
  • [4] Constant mean curvature hypersurfaces in Hn x R with small planar boundary
    Nelli, Barbara
    Pipoli, Giuseppe
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (04) : 1387 - 1404
  • [5] A flow approach to the prescribed Gaussian curvature problem in Hn+1
    Li, Haizhong
    Zhang, Ruijia
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (03) : 521 - 543
  • [6] On nonnegatively curved hypersurfaces in Hn+1
    Bonini, Vincent
    Ma, Shiguang
    Qing, Jie
    MATHEMATISCHE ANNALEN, 2018, 372 (3-4) : 1103 - 1120
  • [7] Starshaped Locally Convex Hypersurfaces with Prescribed Curvature and Boundary
    Su, Chenyang
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (03) : 1730 - 1753
  • [8] A Class of Prescribed Weingarten Curvature Equations for Locally Convex Hypersurfaces with Boundary in Rn+1
    He, Yan
    Tu, Qiang
    Xiang, Ni
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (02)
  • [9] Ruled Weingarten Hypersurfaces in Hyperbolic Space Hn+1
    Asperti, Antonio C.
    Lymberopoulos, Alexandre
    Valerio, Barbara Corominas
    RESULTS IN MATHEMATICS, 2014, 65 (1-2) : 9 - 25
  • [10] C1,α Regularity of Convex Hypersurfaces with Prescribed Curvature Measures
    Chen, Chuanqiang
    Wang, Xu-Jia
    Wu, Yating
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (01) : 331 - 351