Hausdorff content and the Hardy-Littlewood maximal operator on metric measure spaces

被引:0
作者
Liu, Liguang [1 ]
机构
[1] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
Metric measure space; Hausdorff content; Hardy-Littlewood maximal operator; SOBOLEV SPACES; CHOQUET INTEGRALS; CAPACITIES;
D O I
10.1016/j.jmaa.2016.05.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (chi, d, mu) a complete metric measure space and mu be a non-negative Borel regular measure satisfying the doubling condition with some dimensional constant d. We prove that the Hausdorif content of codimension alpha is an element of[0,infinity), denoted by H-alpha, and the Hardy Littlewood maximal operator M satisfy the strong-type inequality integral(x) (Mu)(p) dH(alpha) <= C integral(x) u(p) dH(alpha), 0 <= u is an element of L-loc(1) (chi), whenever p is an element of(max{0, 1 - alpha/d}, infinity). If mu further satisfies some reverse doubling condition with some other dimensional constant kappa, then for the endpoint case p = 1 - alpha/d with alpha is an element of[0, d) boolean AND [0, kappa], we also obtain the corresponding weak-type estimate for H-alpha and M. The fundamental point in the proofs is to introduce and develop a theory of the dyadic Hausdorff content H-D(alpha), which is a Choquet capacity comparable to H-alpha and has the strong subadditivity property. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:732 / 751
页数:20
相关论文
共 20 条
  • [1] Adams D R., 1998, Publ. Mat., V42, P3, DOI [10.5565/PUBLMAT4219801, DOI 10.5565/PUBLMAT4219801]
  • [2] ADAMS DR, 1988, LECT NOTES MATH, V1302, P115
  • [3] REPRESENTATION OF CAPACITIES
    ANGER, B
    [J]. MATHEMATISCHE ANNALEN, 1977, 229 (03) : 245 - 258
  • [4] [Anonymous], 1971, Lecture Notes in Mathematics
  • [5] [Anonymous], 1996, Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
  • [6] Choquet G., 1953, Ann. Institute. Fourier (Grenoble), V5, P131, DOI DOI 10.5802/AIF.53
  • [7] Christ M., 1990, Colloq. Math., V61, P601
  • [8] EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS
    COIFMAN, RR
    WEISS, G
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) : 569 - 645
  • [9] A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Caratheodory Spaces
    Han, Yongsheng
    Mueller, Detlef
    Yang, Dachun
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2008,
  • [10] Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8