Stochastic homogenization and random lattices

被引:61
作者
Blanc, X.
Le Bris, C.
Lions, P.-L.
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] CERMICS, Ecole Natl Ponts & Chaussees, F-77455 Marne La Vallee, France
[3] MICMAC Project, INRIA Rocuquentcourt, F-78153 Le Chesnay, France
[4] Coll France, F-75231 Paris 05, France
[5] Univ Paris 09, CEREMADE, F-75775 Paris, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2007年 / 88卷 / 01期
关键词
stochastic homogenization; thermodynamic limit; random lattices;
D O I
10.1016/j.matpur.2007.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some variants of stochastic homogenization theory for scalar elliptic equations of the form - [GRAPHICS] These variants basically consist in defining stochastic coefficients [GRAPHICS] from stochastic deformations (using random diffeomorphisms) of the periodic setting, as announced in [X. Blanc, C. Le Bris, P.-L. Lions, Une variante de la theorie de l'homogeneisation stochastique des operateurs elliptiques (A variant of stochastic homogenization theory for elliptic operators), C. R. Acad. Sci. Ser. 1343 (2006) 717-727]. The settings we define are not covered by the existing theories. We also clarify the relation between this type of questions and our construction, performed in [X. Blanc, C. Le Bris, P.-L. Lions, A definition of the ground state energy for systems composed of infinitely many particles, Commun. Partial Differential Equations 28 (1-2) (2003) 439-475; X. Blanc, C. Le Bris, P.-L. Lions, The energy of some microscopic stochastic lattices, Arch. Rat. Mech. Anal. 184 (2) (2007) 303-339], of the energy of, both deterministic and stochastic, microscopic infinite sets of points in interaction. (c) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:34 / 63
页数:30
相关论文
共 16 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
[Anonymous], 1994, HOMOGENIZATION DIFFE
[3]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[4]   A definition of the ground state energy for systems composed of infinitely many particles [J].
Blanc, X ;
Le Bris, C ;
Lions, PL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (1-2) :439-475
[5]   The energy of some microscopic stochastic lattices [J].
Blanc, Xavier ;
Le Bris, Claude ;
Lions, Pierre-Louis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 184 (02) :303-339
[6]   A variant of stochastic homogenization theory for elliptic operators. [J].
Blanc, Xavier ;
Le Bris, Claude ;
Lions, Pierre-Louis .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (11-12) :717-724
[7]  
Cioranescu D., 1999, OXFORD LECT SERIES M, V17
[8]  
Krengel U., 1985, ERGODIC THEOREMS GRU, V6
[9]  
MURAT F, 1978, ANN SCUOLA NORM SUP, V5, P485
[10]  
Nguetseng G, 2004, Z ANAL ANWEND, V23, P483