Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type

被引:11
作者
Miranville, A.
Zelik, S.
机构
[1] Univ Poitiers, Lab Math & Applicat, UMR 6086, F-86962 Futuroscope, France
[2] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
关键词
D O I
10.1088/0951-7715/20/8/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this paper is to study the long time behaviour, in terms of finite-dimensional attractors, of degenerate triply nonlinear equations. In particular, we are interested in the case where the equation becomes elliptic in some region.
引用
收藏
页码:1773 / 1797
页数:25
相关论文
共 31 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]  
[Anonymous], CENT EUR J MATH
[3]  
Babin A.V., 1992, ATTRACTORS EVOLUTION
[4]  
Babin A.V., 1989, Attractors of Evolution Equations
[5]   DOUBLY NONLINEAR EQUATION [J].
BAMBERGER, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (02) :148-155
[6]   LOCAL BEHAVIOR OF SOLUTIONS OF AN ELLIPTIC-PARABOLIC EQUATION [J].
DIBENEDETTO, E ;
GARIEPY, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 97 (01) :1-17
[7]   On the singular equation beta(u)(t)=Delta u [J].
DiBenedetto, E ;
Vespri, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 132 (03) :247-309
[8]   IMPLICIT DEGENERATE EVOLUTION-EQUATIONS AND APPLICATIONS [J].
DIBENEDETTO, E ;
SHOWALTER, RE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (05) :731-751
[9]  
Dibenedetto E, 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[10]  
DiBenedetto E., 2004, Handb. Differ. Equ., VI, P169