Algebraic Bethe ansatz for a spin-1/2 quantum linear chain with competing interactions

被引:0
作者
Rego-Monteiro, MA [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, CNPq, BR-22290180 Rio De Janeiro, Brazil
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 46期
关键词
D O I
10.1088/0305-4470/33/46/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a generalization of the formula that gives an integrable quantum 1D spin Hamiltonian with nearest-neighbour interactions as a logarithmic derivative of a vertex model transfer matrix in order to include in this scheme more realistic integrable models. We compute exactly this generalized formula using the R matrix of the XXX model, obtaining the Majumdar-Ghosh Hamiltonian plus a charge-like interaction term. We diagonalize this Hamiltonian using the quantum inverse scattering method and present the Bethe ansatz equations of the model.
引用
收藏
页码:L439 / L445
页数:7
相关论文
共 17 条
[1]  
Baxter R.J., 1989, Adv. Stud. Pure Math., V19, P95
[2]   ONE-DIMENSIONAL ANISOTROPIC HEISENBERG CHAIN [J].
BAXTER, RJ .
PHYSICAL REVIEW LETTERS, 1971, 26 (14) :834-+
[3]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[4]   YANG-BAXTER ALGEBRAS, INTEGRABLE THEORIES AND QUANTUM GROUPS [J].
DEVEGA, HJ .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (10) :2371-2463
[5]  
Diep H T., 1994, Magnetic systems with competing interactions: frustrated spin systems
[6]  
FADDEEV LD, 1979, THEOR MATH PHYS, V40, P194
[7]  
FADDEEV LD, 1982, HOUCHES LECT, P563
[8]   A COUPLED-CLUSTER TREATMENT OF SPIN-1/2 SYSTEMS WITH NEAREST-NEIGHBOR AND NEXT-NEAREST-NEIGHBOR INTERACTIONS [J].
FARNELL, DJJ ;
PARKINSON, JB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (28) :5521-5532
[9]   INTEGRABILITY TEST FOR SPIN CHAINS [J].
GRABOWSKI, MP ;
MATHIEU, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (17) :4777-4798
[10]   EXACT SOLUTION OF F MODEL OF AN ANTIFERROELECTRIC [J].
LIEB, EH .
PHYSICAL REVIEW LETTERS, 1967, 18 (24) :1046-+