Skew-adjacency matrices of graphs

被引:70
作者
Cavers, M. [2 ]
Cioaba, S. M. [3 ]
Fallat, S. [4 ]
Gregory, D. A. [1 ]
Haemers, W. H. [5 ]
Kirkland, S. J. [6 ]
McDonald, J. J. [7 ]
Tsatsomeros, M. [7 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[2] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[4] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[5] Tilburg Univ, Dept Econometr & Oper Res, NL-5000 LE Tilburg, Netherlands
[6] Natl Univ Ireland Maynooth, Hamilton Inst, Maynooth, Kildare, Ireland
[7] Washington State Univ, Dept Math, Pullman, WA 99164 USA
关键词
Skew-adjacency matrices; Graph spectra; Odd-cycle graphs; Matchings polynomials; Pfaffians; SPECTRAL-RADIUS; N-VERTICES;
D O I
10.1016/j.laa.2012.01.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral: relations between the matchings polynomial of a graph and the characteristic polynomials of its adjacency and skew-adjacency matrices; skew-spectral radii and an analogue of the Perron-Frobenius theorem; and the number of skew-adjacency matrices of a graph with distinct spectra. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4512 / 4529
页数:18
相关论文
共 23 条
[1]   On unimodular graphs [J].
Akbari, S. ;
Kirkland, S. J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (01) :3-15
[2]  
[Anonymous], 2000, INTRO GRAPH THEORY
[3]  
Biggs N., 1993, Algebraic graph theory
[4]  
Bondy J.A., 1978, GRAPH THEORY APPL
[5]   ON THE INDEX OF CACTUSES WITH n VERTICES [J].
Borovicanin, Bojana ;
Petrovic, Miroslav .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2006, 79 (93) :13-18
[6]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[7]  
Brualdi R.A., 1991, Encyclopedia of Mathematics and Its Applications, V39
[8]  
Collatz L., 1957, Abh. Math. Semin. Univ. Hamburg, V21, P63, DOI DOI 10.1007/BF02941924
[9]  
Cvetkovi DM., 1980, Spectra of Graphs: Theory and Applications
[10]   The spectral radius of tricyclic graphs with n vertices and k pendent vertices [J].
Geng, Xianya ;
Li, Shuchao .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2639-2653