Yamabe flow;
Manifold with boundary;
Conformal metric;
Scalar curvature;
Mean curvature;
CONSTANT MEAN-CURVATURE;
EXISTENCE THEOREM;
EQUATIONS;
PROOF;
D O I:
10.1016/j.jde.2015.04.011
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study a conformal flow for compact Riemannian manifolds of dimension greater than two with boundary. Convergence to a scalar-flat metric with constant mean curvature on the boundary is established in dimensions up to seven, and in any dimensions if the manifold is spin or if it satisfies a generic condition. (C) 2015 Elsevier Inc. All rights reserved.
机构:
Sogang Univ, Dept Math, Seoul 04107, South Korea
Korea Inst Adv Study, Hoegiro 85, Seoul 02455, South KoreaSogang Univ, Dept Math, Seoul 04107, South Korea
Ho, Pak Tung
Lee, Junyeop
论文数: 0引用数: 0
h-index: 0
机构:
Sogang Univ, Dept Math, Seoul 04107, South KoreaSogang Univ, Dept Math, Seoul 04107, South Korea
机构:
Sogang Univ, Dept Math, Seoul 04107, South Korea
Korea Inst Adv Study, Hoegiro 85, Seoul 02455, South KoreaSogang Univ, Dept Math, Seoul 04107, South Korea
Ho, Pak Tung
Lee, Junyeop
论文数: 0引用数: 0
h-index: 0
机构:
Sogang Univ, Dept Math, Seoul 04107, South KoreaSogang Univ, Dept Math, Seoul 04107, South Korea