Yamabe flow;
Manifold with boundary;
Conformal metric;
Scalar curvature;
Mean curvature;
CONSTANT MEAN-CURVATURE;
EXISTENCE THEOREM;
EQUATIONS;
PROOF;
D O I:
10.1016/j.jde.2015.04.011
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study a conformal flow for compact Riemannian manifolds of dimension greater than two with boundary. Convergence to a scalar-flat metric with constant mean curvature on the boundary is established in dimensions up to seven, and in any dimensions if the manifold is spin or if it satisfies a generic condition. (C) 2015 Elsevier Inc. All rights reserved.
机构:
Univ Buenos Aires, Dept Matemat, FCEyN, CONICET, Ciudad Univ,Pab 1,C1428EHA, Buenos Aires, Argentina
IMAS, Ciudad Univ,Pab 1,C1428EHA, Buenos Aires, Argentina
Consejo Nacl Invest Cient & Tecn, Buenos Aires, ArgentinaUniv Buenos Aires, Dept Matemat, FCEyN, CONICET, Ciudad Univ,Pab 1,C1428EHA, Buenos Aires, Argentina
Henry, Guillermo
Zuccotti, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Dept Matemat, FCEyN, CONICET, Ciudad Univ,Pab 1,C1428EHA, Buenos Aires, Argentina
IMAS, Ciudad Univ,Pab 1,C1428EHA, Buenos Aires, Argentina
Consejo Nacl Invest Cient & Tecn, Buenos Aires, ArgentinaUniv Buenos Aires, Dept Matemat, FCEyN, CONICET, Ciudad Univ,Pab 1,C1428EHA, Buenos Aires, Argentina