Convergence of scalar-flat metrics on manifolds with boundary under a Yamabe-type flow

被引:29
作者
Almaraz, Sergio [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat, BR-24020140 Niteroi, RJ, Brazil
关键词
Yamabe flow; Manifold with boundary; Conformal metric; Scalar curvature; Mean curvature; CONSTANT MEAN-CURVATURE; EXISTENCE THEOREM; EQUATIONS; PROOF;
D O I
10.1016/j.jde.2015.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a conformal flow for compact Riemannian manifolds of dimension greater than two with boundary. Convergence to a scalar-flat metric with constant mean curvature on the boundary is established in dimensions up to seven, and in any dimensions if the manifold is spin or if it satisfies a generic condition. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2626 / 2694
页数:69
相关论文
共 40 条
[1]  
Ahmedou MO, 2003, PROG NONLIN, V54, P1
[2]  
Almaraz S., ARXIV14070673
[3]   ASYMPTOTIC BEHAVIOR OF PALAIS-SMALE SEQUENCES ON MANIFOLDS WITH BOUNDARY [J].
Almaraz, Sergio .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 269 (01) :1-17
[4]   A compactness theorem for scalar-flat metrics on manifolds with boundary [J].
Almaraz, Sergio de Moura .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (3-4) :341-386
[5]   AN EXISTENCE THEOREM OF CONFORMAL SCALAR-FLAT METRICS ON MANIFOLDS WITH BOUNDARY [J].
Almaraz, Sergio de Moura .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (01) :1-22
[6]   On the Yamabe problem and the scalar curvature problems under boundary conditions [J].
Ambrosetti, A ;
Li, YY ;
Malchiodi, A .
MATHEMATISCHE ANNALEN, 2002, 322 (04) :667-699
[7]  
[Anonymous], 1998, SPRINGER MONOGRAPHS
[8]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[9]  
Brendle S, 2005, J DIFFER GEOM, V69, P217
[10]   An existence theorem for the Yamabe problem on manifolds with boundary [J].
Brendle, S. ;
Chen, S. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (05) :991-1016