Variational approximations to homoclinic snaking in continuous and discrete systems

被引:20
作者
Matthews, P. C. [1 ]
Susanto, H. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 06期
关键词
SWIFT-HOHENBERG EQUATION; LOCALIZED PATTERNS; EXPONENTIAL ASYMPTOTICS; ORDER NONLINEARITIES; CHALCOGENIDE GLASSES; DISSIPATIVE SYSTEMS; PERIODIC PATTERNS; SOLITONS; STATES; BIFURCATION;
D O I
10.1103/PhysRevE.84.066207
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Localized structures appear in a wide variety of systems, arising from a pinning mechanism due to the presence of a small-scale pattern or an imposed grid. When there is a separation of length scales, the width of the pinning region is exponentially small and beyond the reach of standard asymptotic methods. We show how this behavior can be obtained using a variational method, for two systems. In the case of the quadratic-cubic Swift-Hohenberg equation, this gives results that are in agreement with recent work using exponential asymptotics. In addition, the method is applied to a discrete system with cubic-quintic nonlinearity, giving results that agree well with numerical simulations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Variational approximations to homoclinic snaking
    Susanto, H.
    Matthews, P. C.
    PHYSICAL REVIEW E, 2011, 83 (03):
  • [2] Homoclinic snaking in the discrete Swift-Hohenberg equation
    Kusdiantara, R.
    Susanto, H.
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [3] Exponential asymptotics of homoclinic snaking
    Dean, A. D.
    Matthews, P. C.
    Cox, S. M.
    King, J. R.
    NONLINEARITY, 2011, 24 (12) : 3323 - 3351
  • [4] Snaking of Multiple Homoclinic Orbits in Reversible Systems
    Knobloch, J.
    Wagenknecht, T.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (04): : 1397 - 1420
  • [5] Homoclinic snaking: Structure and stability
    Burke, John
    Knobloch, Edgar
    CHAOS, 2007, 17 (03)
  • [6] Editorial to Homoclinic snaking at 21: in memory of Patrick Woods
    Champneys, Alan
    IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 86 (05) : 845 - 855
  • [7] Homoclinic snaking near a heteroclinic cycle in reversible systems
    Knobloch, J
    Wagenknecht, T
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 206 (1-2) : 82 - 93
  • [8] Nonreversible homoclinic snaking
    Knobloch, Juergen
    Riess, Thorsten
    Vielitz, Martin
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2011, 26 (03): : 335 - 365
  • [9] Homoclinic snaking in bounded domains
    Houghton, S. M.
    Knobloch, E.
    PHYSICAL REVIEW E, 2009, 80 (02)
  • [10] Beyond all order asymptotics for homoclinic snaking in a Schnakenberg system
    de Witt, Hannes
    NONLINEARITY, 2019, 32 (07) : 2667 - 2693