A 33.2 W High Beam Quality Chirped-Pulse Amplification-Based Femtosecond Laser for Industrial Processing

被引:9
作者
Bai, Zhenao [1 ,2 ,3 ,4 ]
Bai, Zhenxu [5 ,6 ]
Sun, Xiaolong [4 ]
Liang, Yong [4 ]
Wang, Kun [7 ]
Jin, Duo [5 ]
Fan, Zhongwei [1 ,2 ,3 ,8 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Beijing GK Laser Technol Co Ltd, Beijing 102206, Peoples R China
[3] Natl Engn Res Ctr DPSSL, Beijing 100094, Peoples R China
[4] Hangzhou Yacto Technol Ltd, Hangzhou 311300, Peoples R China
[5] Hebei Univ Technol, Ctr Adv Laser Technol, Tianjin 300401, Peoples R China
[6] Macquarie Univ, Dept Phys & Astron, MQ Photon Res Ctr, Sydney, NSW 2109, Australia
[7] Hebei Univ Technol, Sch Energy & Environm Engn, Tianjin 300401, Peoples R China
[8] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
femtosecond; photonic crystal fiber; chirped pulse amplification; laser processing; AVERAGE POWER; ABLATION; PICOSECOND; SYSTEM;
D O I
10.3390/ma13122841
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A photonic crystal fiber-based chirped pulse amplification delivering 272 fs pulses of 66.4 mu J energy at a repetition rate of 500 kHz is presented, resulting in an average/peak power of 33.2 W/244 MW. A single grating is adopted for the pulse width stretching and compression, which leads to high-compactness and low cost of the system. The output beam is near-diffraction-limited (M-2= 1.1 +/- 0.05) with a power stability better than 0.5%. The cutting of alumina ceramic substrate and flexible printed circuit are demonstrated by using the laser system. The results indicate that the laser is competent for industrial applications.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 27 条
  • [1] Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
  • [2] Non-Pulse-Leakage 100-kHz Level, High Beam Quality Industrial Grade Nd:YVO4 Picosecond Amplifier
    Bai, Zhenao
    Bai, Zhenxu
    Kang, Zhijun
    Lian, Fuqiang
    Lin, Weiran
    Fan, Zhongwei
    [J]. APPLIED SCIENCES-BASEL, 2017, 7 (06):
  • [3] Femtosecond laser written diamond waveguides: A step towards integrated photonics in the far infrared
    Bharadwaj, Vibhav
    Wang, Yuchen
    Fernandez, Toney Teddy
    Ramponi, Roberta
    Eaton, Shane M.
    Galzerano, Gianluca
    [J]. OPTICAL MATERIALS, 2018, 85 : 183 - 185
  • [4] Chan CCK, 2010, OPTICAL PERFORMANCE MONITORING: ADVANCED TECHNIQUES FOR NEXT-GENERATION PHOTONIC NETWORKS, P1
  • [5] Chichkov BN, 1996, APPL PHYS A-MATER, V63, P109, DOI 10.1007/BF01567637
  • [6] Femtosecond laser written diamond waveguide excitation of the whispering gallery modes in a silicon microsphere
    Cirkinoglu, Huseyin Ozan
    Bayer, Mustafa Mert
    Serpenguzel, Ali
    Rampini, Stefano
    Sotillo, Belen
    Bharadwaj, Vibhav
    Ramponi, Roberta
    Eaton, Shane Michael
    [J]. OPTICAL MATERIALS, 2019, 92 : 418 - 424
  • [7] Femtosecond ablation of ultrahard materials
    Dumitru, G
    Romano, V
    Weber, HP
    Sentis, M
    Marine, W
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (06): : 729 - 739
  • [8] FEMTOSECOND PULSE GENERATION FROM A TITANIUM-DOPED SAPPHIRE LASER USING NONLINEAR EXTERNAL CAVITY FEEDBACK
    FRENCH, PMW
    WILLIAMS, JAR
    TAYLOR, JR
    [J]. OPTICS LETTERS, 1989, 14 (13) : 686 - 688
  • [9] Femtosecond laser micromachining in transparent materials
    Gattass, Rafael R.
    Mazur, Eric
    [J]. NATURE PHOTONICS, 2008, 2 (04) : 219 - 225
  • [10] Honninger Clemens, 2018, Laser Technik Journal, V15, P50, DOI 10.1002/latj.201800008