Deep Subwavelength Spatial Characterization of Angular Emission from Single-Crystal Au Plasmonic Ridge Nanoantennas

被引:42
作者
Coenen, Toon [1 ]
Vesseur, Ernst Jan R. [1 ]
Polman, Albert [1 ]
机构
[1] FOM Inst AMOLF, Ctr Nanophoton, NL-1098 XG Amsterdam, Netherlands
关键词
nanoantennas; cathodoluminescence spectroscopy; surface plasmon polaritons; point-dipole emitter; electron beam; directional emission; Fourier microscopy; ELECTRON-ENERGY-LOSS; ANTENNAS; MODES;
D O I
10.1021/nn204750d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use spatially and angle-resolved cathodoluminescence imaging spectroscopy to study, with deep subwavelength resolution, the radiation mechanism of single plasmonic ridge antennas with lengths ranging from 100 to 2000 nm. We measure the antenna's standing wave resonances up to the fifth order and measure the dispersion of the strongly confined guided plasmon mode. By directly detecting the emitted antenna radiation with a 2D CCD camera, we are able to measure the angular emission patterns associated with each individual antenna resonance. We demonstrate that the shortest ridges can be modeled as a single point-dipole emitter oriented either upward (m = 0) or in-plane (m = 1). The far-field emission pattern for longer antennas (m > 2) Is well described by two interfering In-plane point dipoles at the end facets, giving rise to an angular fringe pattern, where the number of fringes increases as the antenna becomes longer. Taking advantage of the deep subwavelength excitation resolution of the cathodoluminescence technique, we are able to determine the antenna radiation pattern as a function of excitation position. By including the phase of the radiating dipoles into our simple dipole model, we completely reproduce this effect. This work demonstrates how angle-resolved cathodoluminescence spectroscopy can be used to fully determine the emission properties of subwavelength ridge antennas, which ultimately can be used for the design of more complex and efficient antenna structures.
引用
收藏
页码:1742 / 1750
页数:9
相关论文
共 38 条
[1]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Spectral properties of plasmonic resonator antennas [J].
Barnard, Edward S. ;
White, Justin S. ;
Chandran, Anu ;
Brongersma, Mark L. .
OPTICS EXPRESS, 2008, 16 (21) :16529-16537
[5]   Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence [J].
Barnard, Edward S. ;
Coenen, Toon ;
Vesseur, Ernst Jan R. ;
Polman, Albert ;
Brongersma, Mark L. .
NANO LETTERS, 2011, 11 (10) :4265-4269
[6]  
Barnard ES, 2011, NAT NANOTECHNOL, V6, P588, DOI [10.1038/nnano.2011.131, 10.1038/NNANO.2011.131]
[7]   Electrical Excitation of Surface Plasmons [J].
Bharadwaj, Palash ;
Bouhelier, Alexandre ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)
[8]   Relating localized nanoparticle resonances to an associated antenna problem [J].
Bin Hasan, Shakeeb ;
Filter, Robert ;
Ahmed, Aftab ;
Vogelgesang, Ralf ;
Gordon, Reuven ;
Rockstuhl, Carsten ;
Lederer, Falk .
PHYSICAL REVIEW B, 2011, 84 (19)
[9]   Angle-resolved cathodoluminescence spectroscopy [J].
Coenen, Toon ;
Vesseur, Ernst Jan R. ;
Polman, Albert .
APPLIED PHYSICS LETTERS, 2011, 99 (14)
[10]   Directional Emission from Plasmonic Yagi-Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy [J].
Coenen, Toon ;
Vesseur, Ernst Jan R. ;
Polman, Albert ;
Koenderink, A. Femius .
NANO LETTERS, 2011, 11 (09) :3779-3784