A contractive version of a Schur-Horn theorem in II1 factors

被引:12
作者
Argerami, M. [1 ]
Massey, P. [2 ]
机构
[1] Univ Regina, Dept Math, Regina, SK S4S 0A2, Canada
[2] Univ Nacl La Plata, Dept Math, La Plata, Argentina
关键词
majorization; submajorization; contractive orbits; Schur-Horn theorem;
D O I
10.1016/j.jmaa.2007.03.095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a contractive version of the Schur-Horn theorem for submajorization in II1 factors that complements some previous results on the Schur-Horn theorem within this context. We obtain a reformulation of a conjecture of Arveson and Kadison regarding a strong version of the Schur-Horn theorem in II1 factors in terms of submajorization and contractive orbits of positive operators. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 15 条
[1]  
ANDO T, 1982, MAJORIZATION DOUBLY
[2]  
[Anonymous], 1979, MATH SCI ENG
[3]  
ANTEZANA J, MATHFA0508646
[4]  
ARGERAMI M, IN PRESS INDIANA U J
[5]  
Arnold B.C., 1987, LECT NOTES STAT, V43
[6]  
Arveson W, 2006, CONTEMP MATH, V414, P247
[8]  
Hiai F., 1992, PITMAN RES NOTES MAT, V271, P78
[9]  
Horn A., 1954, AM J MATH, V76, P620, DOI DOI 10.2307/2372705
[10]   The Pythagorean theorem: II. the infinite discrete case [J].
Kadison, RV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5217-5222