Coarse-graining invariant orbits of one-dimensional Z(p)-linear cellular automata

被引:8
作者
Barbe, AM
机构
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 12A期
关键词
D O I
10.1142/S0218127496001478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the properties of state-time evolution patterns of one-dimensional linear cellular automata over the field Z(p) (p prime) which are invariant under certain coarse-graining operations. A procedure is developed for finding all solutions to this invariance problem. The resulting patterns display a complexity which may range from periodic over self-similar, quasi-periodic, quasi-randomlike towards randomlike. Conditions for the existence of periodic solutions are derived.
引用
收藏
页码:2237 / 2297
页数:61
相关论文
共 14 条
[1]   Automatic maps on a semiring with digits [J].
Allouche, JP ;
Cateland, E ;
Peitgen, HO ;
Skordev, G ;
Shallit, J .
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (04) :663-677
[2]  
ALLOUCHE JP, 1997, IN PRESS THEOR COMP
[3]  
Armstrong M. A., 1988, Groups and symmetry
[4]   Coarse-graining invariant patterns of one-dimensional two-state linear cellular automata [J].
Barbe, A ;
Haeseler, FV ;
Peitgen, HO ;
Skordev, G .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06) :1611-1631
[5]  
BARBE A, 1988, COMPLEX SYSTEMS, V2, P209
[6]   A CELLULAR AUTOMATON RULED BY AN ECCENTRIC CONSERVATION LAW [J].
BARBE, AM .
PHYSICA D, 1990, 45 (1-3) :49-62
[7]   ON A CLASS OF FRACTAL MATRICES (I) EXCESS-MATRICES AND THEIR SELF-SIMILAR PROPERTIES [J].
Barbe, Andre M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :841-860
[8]  
Bruce A., 1989, The New Physics, P236
[9]  
Carmichael RD, 1956, Introduction to the Theory of Groups of Finite Orders
[10]  
Graham A., 2018, KRONECKER PRODUCTS M