Automatic selection of compiler options using non-parametric inferential statistics

被引:0
|
作者
Haneda, M [1 ]
Knijnenburg, PMW [1 ]
Wijshoff, HAG [1 ]
机构
[1] Leiden Univ, LIACS, Leiden, Netherlands
来源
PACT 2005: 14TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES | 2005年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose a statistical method to determine the setting of compiler options. Conventionally, programmers use standard - ox settings which are provided by compiler developers. However in order to obtain maximal performance, it is necessary to tune the compiler setting for the application as well as the underlying architecture. In this paper we propose a methodology to configure compiler options automatically using profile information. We apply non-parametric statistical analysis, in particular the Mann-Whitney test, to decide whether to turn on or to turn off compiler flags. This approach produces compiler settings of gcc 3.3.1 for the SPEC2000 benchmark suite that outperform the standard - ox switches on a Pentium 4 processor.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [41] Measuring Spike Train Correlation with Non-Parametric Statistics Coefficient
    Soletta, J. H.
    Farfan, F. D.
    Felice, C. J.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (12) : 3743 - 3746
  • [43] NON-PARAMETRIC STATISTICS FOR THE BEHAVIORAL-SCIENCES - SIEGEL,S
    STUART, A
    ECONOMICA, 1957, 24 (94) : 178 - 179
  • [44] Software reliability analysis using parametric and non-parametric
    Aljahdali, S
    Sheta, A
    Habib, M
    COMPUTERS AND THEIR APPLICATIONS, 2003, : 63 - 66
  • [45] Non-parametric statistical tests for informative gene selection
    Ma, JW
    Li, FH
    Liu, JF
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 697 - 702
  • [46] Non-parametric classifier-independent feature selection
    Abe, N
    Kudo, M
    PATTERN RECOGNITION, 2006, 39 (05) : 737 - 746
  • [47] NON-PARAMETRIC STATISTICS FOR THE BEHAVIORAL-SCIENCES - SIEGEL,S
    SEMEONOFF, B
    BRITISH JOURNAL OF PSYCHOLOGY, 1957, 48 (02) : 152 - 152
  • [48] FEATURES SELECTION USING PARAMETRIC AND NON-PARAMETRIC METHODS: TAG SNPs SELECTION USING GA-SVM AND GA-KNN
    Elatraby, Amr I. A.
    Wahba, Rashad R. T.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2015, 45 (02) : 105 - 123
  • [49] Ophthalmic statistics note 9: parametric versus non-parametric methods for data analysis
    Skene, Simon S.
    Bunce, Catey
    Freemantle, Nick
    Dore, Caroline J.
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2016, 100 (07) : 877 - 878
  • [50] Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA)
    Thatcher, RW
    North, D
    Biver, C
    CLINICAL EEG AND NEUROSCIENCE, 2005, 36 (01) : 1 - 8